The Impact of Radar Detectors on Highway Traffic Safety

The United States Guvernment does not endorse products or manufacturers. Trade or manufacturers' names appear only because they are considered essential to the object of this report.

T. Report No. DOT HS 807518	3. Recipient's Cotolog No.
4. Title and Subtitle The Impact of Radar Detectors on Highway Traffic Safety	5. Repori Do:e August, 1988
	6. Pertarming Organization Code
7 Author's: Pezoldt, V.J. and Brackett, R.Q.	8. Pelfarming Organization Report No. RF 7095
9. Performing Organization Name and Address Texas Transportation Institute Human Factors Div. VI TTI/CE Building, Suite 601 Texas A\&M University, College Station, TX 77843-3135	10. Work Unit No.
	11. Controct or Grant No. DTNH22-87-C-05117
	13. Type of Report and Period Covered
12. Sponsaring Agency Name and Address Department of Transportation	
National Highway Traffic Safety Administration	Final
400 Seventh Street, SW	14. Sponsoring Agency Code
Washington, D.C. 20590	

15. Supplementary Notes

16. Absiroct

As part of a program to examine the relationship between highway traffic safety and the use of radar detectors, comparisons were made between speed distributions when a detectable radar transmission was present and when it was not. The impact of detectors on speeds varied as a function of the states sampled, highway facility type and vehicle classification. The influence of detectors is seen in reductions in the magnitude of three speed parameters when a detectable radar signal is broadcast. Reductions were observed in mean speed, variability among vehicle speeds and the proportion of vehicles exceeding the speed limit. In general, these reductions are most evident where traffic densities are lower, on higher class facilities where speed limits are higher, and among trucks.

The data analyzed for this effort clearly show an influence of radar detectors on traffic behavior when radar is present. This influence can have a negative impact on speed enforcement. Definitive conclusions about the larger issue of the relationship between detectors and traffic safety, however, require resolution of serious methodological issues. The magnitude of the potential negative effect of detectors on traffic safety may be insufficient to warrant further efforts in this regard.

17. Key words Radar, radar detectors	fic speeds	18. Distribution Statement Document is available to the public from the National Technical Information Service, Springfield, VA 22161		
19. Security Classif. (af this repori)	20. Security Clas	f this page)	21. No. of Pogos	22. Price

Form DOT F 1700.7 (8.69)

| CO:TRACIOR | Texas A\&M Research Foundation
 Performed by: Texas Transportation Institute | DTNH22-87-C-05111 |
| :--- | :--- | :--- | :--- |
| REPORT TITE | | |
| The Impact of Radar Detectors On Highway Traffic Safety | August 1988 | |

refort authońs) V. J. Pezoldt and R. Q. Brackett

The National Highway Traffic Safety Administration (NHTSA), responding to concerns of police organizations, the insurance industry, and safety officials, initiated a program of research that would attempt to provide information regarding the relationship, if any, between the use of traffic radar detection devices and highway safety. The primary objective of this project was to gather information that would allow a description of the relationship between radar detectors and traffic speeds on a broader national scale than previously available.

Vehicle speeds in four states were observed under two conditions: 1) in the presence of standard K band police traffic radar, and 2) in the absence of detectable radar. Under both conditions, speeds were measured using traffic radar. The radar units used for data collection were modified to preclude detection by commercially available radar detectors.

Speed data were collected during daylight hours from two moving, unmarked vehicles. The first data collection vehicle was equipped with an undetectable radar unit, a commercially available radar detector and a Citizens Band radio. Vehicle speeds were sampled in the moving mode from the on-coming traffic stream. The second data collection vehicle followed the first, maintaining approximately a five-mile gap. This vehicle was equipped with a standard, unmodified traffic radar unit, an undetectable unit and a CB radio. Speeds were measured using the undetectable unit while the unmodified, detectable unit was transmitting. The speed samples thus obtained were from the same traffic stream under both undetectable and detectable radar conditions. This sampling procedure allowed data collection under the two radar conditions on the same roadways separated temporally by only a few minutes, with nearly identical weather and general traffic conditions. Because the only salient distinction between the two speed surveys conducted on each highway segment was the potential for detecting a radar signal, observed differences in traffic speeds between those samples can reasonably be attributed to the influence of radar detectors. Observations of driver response to the onset of a radar transmission were also made.

Overall, the weight of evidence clearly demonstrated that radar detectors do have an influence on overall traffic speeds. The observed nature of this influence is the reduction of the speeds of some vehicles in the
(Continue or acoditionsl peges)
HFFE=ARE I IGA TME DEFAF!NEAT OF TRAHSFORTAIION, NATIONAL MIGHWAY JRAFFIC SAFEIY ADMINISTRAIIO: UNDER CO.YRACT $1: 0.1$ DTNH22- $\{37-C-05171$. THE OPINIONS, FINOINES, ANO CONCLUSIONS EXPRESSED
 PAAFFIC SAFE:Y ADMINISIRAIIOV."
presence of a radar signal. The number of vehicles influenced and the magnitude of the speed reduction varied as a function of the states sampled, highway facility type, and vehicle classification. In general, the data show that speed reductions are seen among a larger portion of the traffic stream:

- where traffic densities are lower,
- on higher class facilities, where speed limits are higher, and,
- for trucks, which are more likely to be equipped with radar detectors and $C B$ radios.

The speed parameters affected when speed reductions were observed include: the average speed, the proportion of vehicles exceeding the speed limit, and variability among vehicle speeds. These parameters, in turn, produced differences in cumulative speed distributions. For some highway types in each state, neither the cumulative speed distributions nor the separate speed parameters differed in any way that could be attributable to the use of radar detectors.

A few aberrant, and perhaps dangerous braking maneuvers were observed that could be attributable to detector use. Their occurrence was so infrequent that it was impractical to compute a rate or other meaningful statistic. Those manuevers that were observed did not result in traffic conflicts or accidents. It is possible that similar aberrant braking could be exhibited by non-detector users when suddenly encountering an enforcement symbol.

An assessment of the impact of radar detectors on traffic safety requires consideration of the assumptions underlying possible relationships between detector usage and safety. A basic assumption made in most attempts to examine the relationship between radar detector usage and traffic safety is that vehicular speed and speed variance is related to crash severity and/or occurrence. Given that this assumption is valid, it remains to be demonstrated that detector usage influences speed in the absence of a detectable radar signal.

This and other studies have demonstrated that radar detector use is associated with speed reductions in the presence of a detectable signal. The critical information that is not known is whether the original higher speeds were selected because of information made available by the detector or if the only behavior affected was the subsequent speed reduction.

The potential negative influence of radar detectors on traffic safety may not be of sufficient magnitude to warrant the expenditure of the funds necessary to overcome serious methodological problems that need to be resolved if the causal relationship between detector use and traffic safety is to be fully defined.

This is not to be taken as an indication that detector usage has a positive or even a neutral influence on traffic safety. The authors interpretation of the data collected, is, in fact, that the influence of radar detectors is negative. If they have no other influence, the use of radar detectors undermines efforts to increase the perceived level of speed enforcement. This and other as yet unsubstantiated untoward influences of radar detectors, and perhaps the devices themselves, may well be obviated through advances in enforcement technology and as a consequences of legal action's.

ADDENDUM
The Impact of Radar Detectors on Highway Safety
Texas Transportation Institute

On Friday, April 21, 1989 the National Highway Traffic Safety Administration (NHTSA) published in the Federal Register a notice of the availability of the draft final report of this study and created a file to provide the public with an opportunity to present comments on the draft report. The closing date for comments was June 20, 1989.

A total of 10 organizations and individuals submitted comments to the docket. Of these, six respondents agreed with all or part of the study, while four respondents commented in support of the use of radar detectors.

Comments In Support of the Study

The Department of California Highway Patrol (CHP) and the Group United Against Radar Detectors (GUARD) submitted similar comments on their perceptions regarding motorists who use radar detectors. The CHP stated that the only real purpose for radar detectors was to allow speeding motorists to avoid police radar surveillance and the resulting enforcement action, while GUARD agreed with the authors statement that the use of radar detectors undermines efforts to increase the perceived level of speed enforcement.

The National Safety Council commented that they agreed with the authors statement that radar detectors have a clear, negative effect on traffic behavior and speed enforcement. The American Trucking Association (ATA) was also among the respondents commenting in support of the study. ATA restated their position strongly supporting effective speed limit enforcement, supporting a ban on the use of radar detectors or any other device designed to circumvent speed limit enforcement and encouraged the Federal Highway Administration to take action to ban the possession and/or use of radar detectors by drivers of heavy trucks.

The Insurance Institute for Highway Safety (IIHS) submitted 3 comments, including excerpts from its publication, Status Report. These excerpts are entitled "Radar Detectors: Ally of the Law-Abiding," and "many motorists admit driving faster when they use a 'Fuzz Buster'." IIHS also complimented the Texas Transportation Institute (TTI) on the design and competency of the study and urged NHTSA to investigate the potential methods for reducing the impact of radar detectors. The Commissioner of the Department of Motor Vehicles for the State of New York commented that she endorses the author's opinion that radar detectors have a detrimental effect on enforcement and traffic safety efforts and supports further research on this subject by NHTSA.

Comments In Support of Radar Detectors

Of the four respondents favoring the use of radar detectors, one was from a citizen who commented that detectors allow citizens to know when their police officers are nearby should they need any assistance, that they slow drivers in many instances and that they make drivers aware of speed laws.

The second response in support of radar detectors came from Maxon Systems, Inc. (MSI), a corporation engaged in the design, manufacture, sale and distribution of radar detectors. MSI claimed the study did not establish any casual relationship between radar detectors and traffic safety. MSI also questioned the methodology used by the authors in gathering the data and the accuracy of the measuring devices used (radar guns). Additionally, MSI asserted that the study failed to establish any direct link between radar detectors and vehicle travel speeds higher than the driver would normally select. Finally, MSI commented that the authors made a subjective judgment in their final conclusions by stating that "the influence of radar detectors is negative" and requested NHTSA to take several actions, including not publishing the report and not using the report as a basis for a rule-making but to adopt the authors' recommendation that no further investigation be undertaken.

RADAR, Inc., the third commenter favoring the use of radar detectors, is a trade association composed of radar detector manufacturers, distributors and retailers, as well as motorists. RADAR commented that the study was inconclusive at best and did not provide credible answers to the issue as to whether there is any relationship between the use of radar detectors and highway safety. RADAR commented on what they thought were contradictions and alleged that the report's results did not support the conclusion. RADAR also urged NHTSA to reject the study as the basis for government action.

The fourth dissenter from the study was The Citizens For Rational Traffic Laws, Inc. who concluded that the report lacked definitive evidence that radar detector use makes highways less safe and recommended that NHTSA not undertake any further investigation of the issue.

Conclusion

The factual findings in this report were limited, as clearly noted in the "Discussion" chapter of the draft report (Chapter 4.0, pp. 37-41). While the authors expressed their own personal views on radar detectors (see Section $4.4, p .41$), they also recommended against further expenditure of resources on the subject, given the inherent difficulties of measuring real-world safety impact in a sufficiently objective manner.

The Agency received very little comment on the factual material and analysis presented in the draft report. Instead, most of the commenters simply re-stated their own previously held (and widely known) views on radar detectors -- some in favor and some opposed -- citing one or more of the report's limitations to support their respective positions. While NHTSA appreciates knowing of those policy viewpoints, the comments did not provide a basis for amending the report. Accordingly, the report is accepted and published in its entirety.
PAGE
1.0 INTRODUCTION 1
1.1 Objective 1
1.2 Background 1
1.3 Related Investigations 1
2.0 METHOD 4
2.1 Speed Data Collection Procedure 4
2.2 Data Collection Sites 5
2.2.1 Sample Sites 5
2.2.2 Sample Highway Segments 5
2.3 Speed Data Analysis 7
2.4 Observations of Driver Control Behavior 7
3.0 RESULTS 9
3.1 Comparisons of Detectable and Undetectable Speed Distributions 9
3.1.1 Interstate Highways 9
3.1.2 Non-Interstate 55 mph Highways 9
3.1.3 Low Speed Roads 18
3.2 Comparisons of Mean Speeds and Proportion of Vehicles Exceeding Speed Levels 18
3.2.1 Interstate Highways 18
3.2.2 Non-Interstate 55 mph Highways 27
3.2.3 Low Speed Roads 31
3.3 Speed Variance as a Function of Radar Condition. 31
3.4 Driver Response to the Onset of Detectable Radar 36
4.0 DISCUSSION 37
4.1 The Influence of Radar Detectors on Traffic Speeds 37
4.1.1 Detector Influence on Average Speeds 37
4.1.2 Influence on the Proportion of Vehicles Exceeding the Speed Limit 38
4.1.3 Detector Influence on Speed Variability 38
4.2 Detector Influence on Braking Behavior 38
4.3 Assessing the Impact of Radar Detectors on Highway Safety 39
4.3.1 Underlying Assumptions 39
4.3.2 Methodological Issues 39
4.3.3 Practical Issues 40
4.4 Recommendations 40
5.0 REFERENCES 42
Table of Contents (cont'd)
PAGE
APPENDIX A Speed Data Highway Segments A-1
APPENDIX B Summary Descriptive Statistics B-1
APPENDIX C Kolmogorov-Smirnov Statistical Tables C-1
APPENDIX D Cumulative Speed Distributions. D-1

LIST OF TABLES

PAGE
TABLE 2.1 Highway facilities sampled in Ohio, New York, Texas and New Mexico 6
TABLE 3.1 Summary of results of Kolmogorov-Smirnov tests. 10
TABLE 3.2 Differences in mean speeds and proportion of vehicle exceeding the speed limit on rural interstate highways as a function of radar condition 25
TABLE 3.3 Differences in mean speeds and proportion of vehicles exceeding the speed limit on non- interstate 55 mph highways as a function of radar condition 30
TABLE 3.4 Differences in mean speeds and proportion of vehicles exceeding the speed limit on low speed roadways as a function of radar condition 33
TABLE 3.5 Standard deviations of passenger vehicle and truck speeds measured in the presence (D) and absence (U) of detectable radar 35

LIST OF FIGURES

PAGE
FIGURE 3.1 Speed distributions on Ohio 65/55 mph interstates. 11
FIGURE 3.2 Speed distributions on NY 55 mph interstates. 12
FIGURE 3.3 Speed distributions on TX $65 / 55 \mathrm{mph}$ interstates. 13
FIGURE 3.4 Speed distributions on NM 65 mph interstates. 14
FIGURE 3.5 Speed distributions on OH 55 mph interstates. 15
FIGURE 3.6 Speed distributions on TX 55 mph interstates 16
FIGURE 3.7 Speed distributions on NM 55 mph interstates. 17
FIGURE 3.8 Speed distributions on TX 55 mph four lane highways 19
FIGURE 3.9 Speed distributions on TX 55 mph two lane highways 20
FIGURE 3.10 Speed distributions on NM 55 mph four lane highways 21
FIGURE 3.11 Speed distributions on NM 55 mph two lane highways 22
FIGURE 3.12 Speed distributions on $O H 25 \& 35 \mathrm{mph}$ roads 23
FIGURE 3.13 Speed distributions on NY 30 mph roads. 24
FIGURE 3.14 Speed distributions on NM 45 mph roads 24
FIGURE 3.15 U:D ratios for highest speed interstates 28
FIGURE 3.16 U:D ratios for urban interstates 29
FIGURE 3.17 U:D ratios for 55 mph non-interstate highways 32
FIGURE 3.18 U:D ratios for low speed roads 34

1.0 INTRODUCTION

1.1 Objective

The National Highway Traffic Safety Administration (NHTSA), Pesponding to concerns of police organizations, the insurance industry, and sareey officials, initiated a program of research that would attempt to provide information regarding the relationship, if any, between the use of traffic padar deeection devices and highway safety. The primary objective of the injtia project in this program, which is reported here, was to gather information thei would allow a description of the relationship between radar detectors and traffic speeds on a broader national scale than previously available. In addition, the contractors were requested to offer any insights they might have, based on analysis of the data collected during the course of this study and on their informed opinion, regarding the feasibility of pursuing further seudy of the impact of detector use on highway safety. This assessment, necessarily, would include a review of methodological alternatives that might be used ε co adress the issue.

1.2 Background

The primary tool used in many jurisdictions for the enforcement of traffic speed laws is Doppler effect traffic radar. Measurement of the speec of moving vehicles is made possible with radar by virtue of the fact that the frequency of a reflected radio wave transmitted by traffic radar is altered in jinear proportion to the speed of the object off of which it is reflecteci. like any other radio transmissions, microwaves transmitted by traffic rader cam be received by receivers tuned to the appropriate frequency. Radar detection devices are specialized radio receivers tuned to respond to the frecuancies allocated by the Federal Communications Commission (FCC) for use by bipaffic radar and other radio-location devices. Radar detectors receive traffic radar transmissions and provide a visual and/or audible signal of the radar presence.

It has been hypothesized by traffic law enforcement officjals and others concerned with highway traffic safety that the increasing use of radar detectors decreases voluntary compliance with speed laws both by shose motorists using detectors and by other drivers in the traffic siream tho are influenced by detector-equipped vehicles, thereby encouraging, if not causing, excessive traffic speeds in the absence of a detected traffic radar transmission. Excessive speed, in turn, has been related to increased severity of accidents that occur, and is posited as a factor contributing to increased accident frequency. In addition, another negative impact on highoway safety resulting from detector use has been suggested. That is a presumed increase in the probability that detector equipped drivers will engage in sudden braking or other unsafe driving manuevers in response to a detected traffic radar transmission.

1.3 Related Investigations

While there is no dearth of opinion on the influence of radar detectors on traffic speeds, traffic law enforcement, and other aspects of highway safety, much of the evidence cited to support various viewpoints is, at best, anecdotal and/or methodologically flawed, and, at worst, reflects particular ideological or pecuniary interests with little more than a semblance of objectivity.

Several systematic efforts to quantify the influence of radar detectors on traffic speeds have been undertaken. Three studies employing traffic radar which was nodified to be undetectable by commercially available radar detectors have been reported.

Based on a relatively small sample, Goodson (in Maryland State Police, 1986) reports mean vehicle speeds measured with undetectable radar to be nearly 3 miles per hour faster than speeds measured at the same Texas Interstate highway location with standard detectable radar. The proportion of vehicles exceeding 60 mph decreased by 12 percent when measured with detectable radar compared with speeds determined using undetectable radar. A similar, but more extensive study conducted in Maryland and Virginia by the Insurance Institute for Highway Safety, (Ciccone, Goodson, and Pollner, 1987) also found statistically significant, though much smaller, differences in mean speeds when measured in the presence and absence of a radar transmission. The effect of detectable radar on speed distributions varied by road and vehicle type. Reductions in mean speeds as a function of the presence of a detectable radar transmission were greatest on interstate highways and among tractor-trailers and sport/specialty cars. Similarly, the greatest reductions in the proportion of vehicles exceeding 65 and 70 mph when a detectable signal was present were seen among these vehicles. The proportion of all vehicles exceeding 65 and 70 mph declined by 20 and 44 percent, respectively, on a Maryland interstate. Both of these studies monitored speeds at fixed locations with stationary speed measurement instrumentation. In addition to measuring vehicle speeds, these efforts also included observations of braking behavior exhibited by drivers of vehicles suspected of using radar detectors.

A third recent effort to quantify the influence of radar detectors on traffic speeds was conducted by the present investigators for the Texas Department of Highways and Public Safety (Pezoldt, 1987, Pezoldt and Brackett, 1987). Speed data were collected on more than a thousand miles of Texas highways with 55 mph posted speed limits under two conditions: 1) in the presence of conventional traffic radar and 2) in the absence of detectable radar. Under both conditions, speeds were measured with radar modified to be undetectable as in the Goodson and Insurance Institute for Highway Safety studies. Unlike those efforts, however, data were collected in the moving radar mode from the oncoming traffic stream. The highways sampled included urban and rural interstates, two and four lane state and U.S. highways and farm-to-market roads. For all vehicle classifications combined, small but significant decreases were observed in means speeds when measured in the presence of a detectable radar signal on all highway types. These differences were primarily a function of higher mean truck speeds when the radar signal was not detectable. The influence of radar detectors on speeds was also observed in traffic speed distributions. Markedly different speed profiles were observed when detectable radar was present than when it was not. For example, on all highways combined, 16.5 percent of the truck speeds sampled exceeded 65 mph when a radar signal was not detectable, compared to 5.5 percent in the presence of detectable radar, a three-fold change. The proportion of trucks exceeding 70 mph , while very small under both conditions, was more than four and a half times greater when measured in the absence of detectable radar than when a detectable radar transmission was present. Although the observed differences were less pronounced than for trucks, the proportion of passenger vehicles exceeding 70 mph was significantly greater when radar was not detectabla. Oyerall, the greatest impact of detectable radar, and presumably
of radar detector use, was apparent among drivers of passenger vehicles in the highest speed categories ($>70 \mathrm{mph}$) and among drivers of commercial erucks. The Texas study provided the basic model for the project reported here.

In a recently reported study conducted in Kentucky (Pigman, Agent, Deacon \& Kryscio, 1987) an attempt was made to take advantage of the speed reducing influence of radar detectors in the presence of detectable radar transmissions. Automated data collection at existing speed monitoring stations and manual time-distance techniques were used to measure speeds in the presence and absence of both unmanned radar and active police speed enforcement. Statistically significant reductions in the number of vehicles exceeding speed levels in five mph increments from 65 to 80 mph were observed when "radar on" speeds were compared to expected speeds with no radar present. Also, the variability of vehicle speeds was decreased significantly in the presence of a radar transmission.

Pigman, et al also compared accident data for the three years prior to and one year after the installation of unmanned radar in the Kentucky study. A reduction in both truck-related and speed-related accidents was observed in the post-radar period. The period after the installation of unmanned radar, however, coincided with the diversion of through trucks off a portion of the highway section studied.

In another effort to determine if radar detectors have an influence on traffic safety, a telephone survey conducted by Yankelovich, Skelly and White/Clancy Shulman, Inc. (1987) was undertaken to provide a comparison of the accident rates of radar detector users and non-users. Based on self reports, the results of this survey indicate that although radar detection device users reported more accidents in the year preceding the survey than non-users, the mileage-adjusted crash rate of detector users is considerably lower than that of non-users. Users drive an average of 233,933 miles between accidents compared to 174,554 miles for non-users. The basic conclusion drawn from the survey, that detector users have fewer accidents per mile than non-users, has been challenged by Lund (1988) on sampling and logical grounds. The sampling problems identified by Lund include the reported discrepancies in the age, gender, socioeconomic, and miles driven per year distributions of the user and non-user samples. Also important to crash rates, but unreported among the survey respondents, are the types roads travelled. In addition to these sampling issues, Lund suggests that the comparison between crash rates of detector users and non-users does not address the more pertinent issue of whether the crash rates of detector users would be different if they did not use radar detection devices.

The implications of the studies noted briefly here are addressed further in Section 4 along with the discussion of the results of the present investigation.

2.0 METHOD

2.1 Speed Data Collection Procedure

Vehicle speeds in four states were observed under two conditions: 1) in the presence of standard K band police traffic radar, and 2) in the absence of detectable radar.

Under both conditions, speeds were measured using traffic radar. The radar units used for data collection were modified to preclude detection by commercially available radar detectors. Radar detectors now in service are predominantly of the superheterodyne type. These receivers are characterized by narrow band widths and high sensitivity. They are sensitive to transmissions in the $K(24.150 \mathrm{GHz}$) and $X(10.525 \mathrm{GHz})$ band frequencies allocated by the Federal Communications Commission for police radar transmitters and other radio location services. Typically, radar detectors will receive signals $+/-100 \mathrm{MHz}$ around these frequencies. The radar transmitters used for measuring vehicle speeds in this project were tuned to a frequency outside those received by radar detectors. The modifications to the radar units result in speed indications that are consistently higher than those of unmodified radar. Thus, the speeds collected were inflated by a small amount compared to speeds measured with unmodified radar. Although all speed comparisons conducted for this project are relative, the speed data were adjusted to account for this measurement error before analysis. All speed data presented in this report have been adjusted.

Speed data were collected during daylight hours from two moving, unmarked vehicles. The first data collection vehicle was equipped with an undetectable radar unit, a commercially available radar detector and a Citizens Band radio. Vehicle speeds were sampled in the moving mode from the on-coming traffic stream. No data were collected when the radar detector indicated that police radar or other radio transmissions to which the detector is sensitive were present. The second data collection vehicle followed the first, maintaining approximately a five-mile gap. This vehicle was equipped with a standard, unmodified traffic radar unit, an undetectable unit and a CB radio. Speeds were measured using the undetectable unit while the unmodified, detectable unit was transmitting. The speed samples thus obtained were from the same traffic stream under both undetectable and detectable radar conditions. This sampling procedure allowed data collection under the two radar conditions on the same roadways separated temporally by only a few minutes, with nearly identical weather and general traffic conditions. The majority of vehicles sampled were included in both conditions, albeit at different positions on the highway. The logic of the approach employed and its implications for evaluating the influence of radar detectors on traffic speeds is simple and straightforward. If the only salient distinction between the two speed surveys conducted on each highway segment is the potential for detecting a radar signal, then observed differences in traffic speeds between those samples can reasonably be attributed to the influence of radar detectors.

Under both radar conditions, only free flowing vehicles were sampled. The proportion of vehicles in the traffic stream for which speeds were ascertained, therefore, varied as a function of traffic volume. On low volume, rural two lane highways, virtually 100 percent of the vehicles were sampled. On high volume roadways the proportion of the total stream sampled was considerably smaller.

Speed surveys from previous research have shown that speeds of cars and trucks produce two distinct distributions on most roadways. Consequently, for purposes of clarity and analytic precision, each vehicle sampled was classified as a passenger vehicle or a truck. Passenger vehicles included amtomobiles, pickup trucks, small vans and recreational vehicles. A large majority of the vehicles classified as trucks were 18 -wheel tractor/ semi-trailer combinetjons. Also included in the truck classification were straight trucks, and other commercial freight hauling and service vehicles. Neither buses nor motorcycles were included in the sample. Vehicle classification and speeds were recorded directly on data forms or, in some cases, recorded on audio tape and subsequently transcribed.

2.2 Data Collection Sites

Vehicle speeds were sampled from as broad a geographical distribution nationwide as practicable within project constraints. In each geographical area surveyed, the sample included rural roadways with different speed limits, particularly 65 and 55 mph , a mix of functional classifications, encompassing interstate highways, non-interstate multi-lane limited access roads, and two and four lane highways with at-grade intersections. High volume urben highways and city streets with frequent traffic control devices were also sampled, though to a lesser extent.

Since the primary tenor of this study was descriptive, the roadways on which speed surveys were conducted provide neither a true random sample of all U.S. highways nor a sample stratified by, for example, traffic volume or functional classification. Such samples would have included a very large proportion of urban roadways and of secondary rural highways that in the aggregate carry a large proportion of traffic nationwide, but which individually carry low volumes.
2.2.1 Sample States. Initially, three states, Ohio, New York, and New Mexico were selected for inclusion in the speed surveys. These states were chosen, in consultation with NHTSA, to provide a geographically broad sample nationwide. Because of a concern that low traffic volumes in New Mexico would preclude efficient sampling, speed samples were taken in west Texas as well. In addition to providing a broad geographic sample, these states also provided the opportunity to sample speeds on rural interstate highways with different legal speed limits. The 1987 Surface Transportation and Uniform Relocation Act included a provision that allowed the states to raise the speed limit above the previous 55 mph maximum on certain rural interstate highways. As of the data collection periods, the sample states had responded differently to the new speed provision. New York has retained the 55 mph speed limit on all interstate highways. New Mexico raised the speed limit to 65 mph on all eligible highways for all vehicles. Both Ohio and Texas instituted differential speed limits for passenger vehicles (65 mph) and trucks (55 and 60 mph in Ohio and Texas respectively) on rural interstates.
2.2.2 Sample Highway Segments. Speed surveys were conducted on 118 roadway segments comprising a total of more than 3,200 highway miles in the four states. The length of survey segments ranged from as short as 3 miles for low speed urban streets and short speed-zoned sections of rural highways, to as long as 82 miles for essentially uninterrupted stretches of rural interstate and other primary highways. The highways sampled are categorized in Table 2.1 by facility type and speed limit. Identification of each individual segment is

OHIO

65/55 mph Interstates 55 mph Interstates 55 mph 4 Lane Divided 55 mph 2 Lane 50 mph 2/4 Lane 45 mph 2/4 Lane $40 \mathrm{mph} 2 / 4$ lane $35 \mathrm{mph} 2 / 4$ Lane $25 \mathrm{mph} 2 / 4$ Lane

65/60 mph Interstates 55 mph Interstates 55 mph 4 Lane Divided 55 mph 2 Lane

NEW YORK

55 mph Interstates
55 mph 4 Lane Divided
$55 \mathrm{mph} 2 / 4$ Lane
50 mph 2 Lane
$45 \mathrm{mph} 2 / 4$ Lane
$40 \mathrm{mph} 2 / 4$ Lane
$35 \mathrm{mph} 2 / 4$ Lane
$30 \mathrm{mph} 2 / 4$ Lane

NEW MEXICO

65 mph Interstates
55 mph Interstates
55 mph 4 Lane Divided
55 mph 2 Lane
$55 \mathrm{mph} 2 / 4$ Lane (urban)
45 mph 2/4 Lane
$40 \mathrm{mph} 2 / 4$ Lane
$35 \mathrm{mph} 2 / 4$ Lane
provided in Appendix A. The legal speed on the roadways sampled ranged from 25 to 65 mph . As previously indicated, the majority of the sample dece was collected on rural interstates and 55 mph rural highways. To a lesser extent, lower speed roadways, including urban streets, were also sampled.

2.3 Speed Data Analysis

Speed limits, enforcement, and other roadway and traffic charesteristics varied considerably from state to state, consequently no attempt wes made to aggregate the data across states. Within each sample state, speed dêa were grouped across segments into highway facility groups with simider eitributes. These groups are identified in Table 2.1 for each of the four sample states. Speed distributions within each facility group are analyzed separateig for passenger vehicles and trucks.

The cumulative speed distributions of each highway facili仑y group were subjected to a Kolmogorov-Smirnov two-sample test. This test provides a means to determine whether two independent samples, in this case speed semmos collected when a detectable radar signal was either present or absent, have been drawn from the same population or populations with the same eiseribution. If the availability of a detectable radar signal has no influence on traffic speeds, the cumulative distributions of the two should be fairiy ciose to each other since each should show only random deviations from the populetion distribution. If, on the other hand, the two sample cumulative disirsibutions reveal a substantial difference at any point on the distribution, Eise samples likely come from different populations. The two-tailed test employed here is sensitive to any differences in the distributions, including centra? \&endency, dispersion, and skewness (Siegel, 1956). If the two samples were drawn from different populations, further analyses were conducted to determine the nature of the difference. For ease of exposition, the speed distribuitons will henceforth be referred to as "detectable" and "undetectable" with regard to the presence or absence of a detectable radar transmission when the sample data were collected.

Three parameters of significantly different detectable and urcetectable distributions were evaluated: average speed, characterized by the mean; differences in the proportion of vehicles exceeding selected 5 mon speed increments; and speed variability, as represented by the standard deviation and variance. Differences in mean speeds and in the proportion of vehicles exceeding various speeds as a function of the presence or absence of a detectable radar transmission were assessed by two-tailed z tests of means and proportions, respectively. Sample variances were subjected to F eesis to evaluate the significance of any differences in variability.

2.4 Observations of Driver Control Behavior

As noted previously, it has been suggested that radar detectors may influence other driver behaviors in addition to selected speed. Ciccone, et al (1987) report a high incidence of sudden braking among vehicles judged to be using detectors. Similar observations were made in the present effort.

Observations of driver response to the onset of a radar transmission were made from both stationary positions, including highway access roads, overpasses, and highway shoulders, and from moving vehicles. In the latter case, two vehicles travelling slightly slower than the traffic stream were deployed. In the lead vehicle, a detectable radar unit with the amienna
pointing rearward was intermittently activated. Observers in the trailing vehicle, equipped with a radar detector, observed the behavior of vehicles interposed between the two test cars at the onset of radar transmission.

3.0 RESULTS

In all, the speeds of more than 30,000 vehicles were observed. Of these, 66% were classified as passenger vehicles and 34% were trucks. Summary descriptive statistics for the detectable and undetectable sample distributions obtained from the various highway facility groups in each state are provided in Tables B1 through B29 in Appendix B. For each sample, the number of vehicles sampled, mean speed, standard deviation, and percentage of vehicles exceeding five mph incremental speed levels are provided for all vehicles combined and for passenger vehicles and trucks separately. All subsequent analyses were performed separately for the two vehicle classifications.

3.1 Comparisons of Detectable and Undetectable Speed Distributions.

The results of the Kolmogorov-Smirnov tests are summarized in Table 3.1. Detailed statistical tables for each of the tests and a complete listing of the cumulative speed distributions are provided in Appendix C and D, respectively. As is evident from inspection of the table, observed differences in detectable and undetectable speed distributions are not identical among the four sample states and vary as a function of facility group and vehicle type. The volume of truck traffic on low speed roads is generally quite small. Insufficient numbers of trucks were observed on the low speed roads sampled to allow meaningful statistical analysis.
3.1.1 Interstate Highways. The presence of a detectable radar transmission resulted in statistically significant differences between the detectable and undetectable cumulative speed distributions in all sample states for both passenger vehicles and trucks on those rural interstate highways with the fastest legal speed limits. Detectable and undetectable speed distributions on these highways are compared graphically in Figures 3.1-3.4 for each of the sampled states. Although the Kolmogorov-Smirnov test is performed on the cumulative distributions, observed speeds are displayed in these figures as density functions for five mph speed groups. In New York, Texas, and New Mexico the undetectable distribution is shifted to the right (higher speeds) relative to the detectable distribution for both passenger vehicles and trucks. In Ohio this shift is reversed for the passenger vehicle distributions. On the Ohio rural interstates sampled, the overall speed distribution for passenger vehicles appears higher when a detectable radar transmission is present.

The speed distributions for those interstates sampled in Ohio, Texas and New Mexico on which the speed limit is 55 mph for all vehicles are shown in Figures 3.5 - 3.7. These are more urban interstates. As such, they did not qualify for the increased speed limit as did rural interstates. Differences in the passenger vehicle distributions are statistically significant for the roadways sampled in New Mexico, but not in Ohio and Texas. Analysis of truck speed distributions reveals the opposite result. Truck distributions in Ohio and Texas differ significantly as a function of radar condition, whereas in New Mexico they do not.
3.1.2 Non-Interstate 55 mph Highways. Significant differences in cumulative speed distributions due to radar condition were observed on two and four lane non-interstate highways in Texas and New Mexico, but not in Ohio or New York.

Table 3.1 Summary of results of Kolmogorov-Smirnov tests

State	facility classification	PASSENGER VEHS.	TRUCKS
OH	65/55 mph Interstates	x	x
	55 mph Interstates		X
	55 mph 4 Lane Divided		
	55 mph 2 Lane		
	$50 \mathrm{mph} 2 / 4$ Lane		NA*
	$45 \mathrm{mph} 2 / 4$ Lane		NA
	$40 \mathrm{mph} 2 / 4$ lane		NA
	$35 \mathrm{mph} 2 / 4$ Lane	x	NA
	25 mph 2/4 Lane	X	NA
NY	55 mph Interstates	x	X
	55 mph 4 Lane Divided		
	$55 \mathrm{mph} 2 / 4$ Lane		
	50 mph 2 Lane		NA
	$45 \mathrm{mph} 2 / 4$ Lane		NA
	$40 \mathrm{mph} 2 / 4$ Lane		NA
	$35 \mathrm{mph} 2 / 4$ Lane		NA
	$30 \mathrm{mph} 2 / 4$ Lane	x	NA
TX	65/60 mph interstates	X	x
	55 mph Interstates		\underline{x}
	55 mph 4 Lane Divided	x	x
	55 mph 2 Lane		X
NM	65 mph Interstates	x	x
	55 mph Interstates	x	
	55 mph 4 Lane Divided	X	
	55 mph 2 Lane	X	
	$55 \mathrm{mph} 2 / 4$ Lane (urban)		NA
	$45 \mathrm{mph} 2 / 4$ Lane	x	NA
	$40 \mathrm{mph} 2 / 4$ Lane		NA
	$35 \mathrm{mph} 2 / 4$ Lane		NA

*Not analyzed, insufficient sample size.

OHIO
65/55 MPH INTERSTATES PASSENGER VEHICLES

\rightarrow DETECTABLE $\quad \cdots \cdot$ UNDETECTABLE

OHIO
65/55 MPH INTERSTATES trucks

\rightarrow DETECTABLE $\quad \cdots *$ UNDETECTABLE
Figure 3.1. Speed distributions on Ohio 65/55mph interstates

NEW YORK 55 MPH INTERSTATES PASSENGER VEHICLES

NEW YORK
55 MPH INTERSTATES TRUCKS

- DETECTABLE $\quad-* \cdot$ UNDETECTABLE

Figure 3.2. Speed distributions on NY 55 mph interstates.

TEXAS
65/60 MPH INTERSTATES PASSENGER VEHICLES

TEXAS
65/60 MPH INTERSTATES TRUCKS

\rightarrow DETECTABLE $\quad-* \cdots$ UNDETECTABLE
Figure 3.3. Speed distributions on TX 65/55 mph interstates.

NEW MEXICO
65 MPH INTERSTATES PASSENGER VEHICLES

NEW MEXICO
65 MPH INTERSTATES
TRUCKS

\rightarrow DETECTABLE $-* *$ UNDETECTABLE
Figure 3.4. Speed distributions on NM 65 mph interstates.

OHIO
 55 MPH INTERSTATES PASSENGER VEHICLES

OHIO
55 MPH INTERSTATES TRUCKS

Figure 3.5. Speed distributions on OH 55 mph interstates.

TEXAS
55 MPH INTERSTATES PASSENGER VEHICLES

TEXAS
55 MPH INTERSTATES TRUCKS

Figure 3.6. Speed distributions on TX 55 mph interstates.

NEW MEXICO
55 MPH INTERSTATES PASSENGER VEHICLES

NEW MEXICO
55 MPH INTERSTATES trucks

\rightarrow DETECTABLE $\quad \cdots \cdots$ UNDETECTABLE
Figure 3.7. Speed distributions on NM 55 mph interstates.

The distributions for Texas and New Mexico are illustrated in Figures 3.8 -3.11. In Texas, differences were observed for trucks on both four and two lane 55 mph highways. Passenger vehicle distributions differ significantly only on the four lane facilities. In New Mexico, passenger vehicle distributions differ significantly on both four and two lane highways, whereas the differences observed in truck speed distributions are not statistically significant.
3.1.3 Low Speed Roads. Cumulative speed distributions differed significantly as a function of radar condition on some lower speed roads in Ohio, New York and New Mexico. Distributions of passenger vehicle speeds, as shown in Figure 3.12, are different on 25 and 35 mph urban streets sampled in Ohio. The detectable distributions for these facilities are shifted toward lower speeds. The passenger vehicle distributions for New York 30 mph roadways exhibit a similar shift, as shown in Figure 3.13. Figure 3.14 depicts the distributions for cars sampled on New Mexico 45 mph facilities. In this case, the relationship between detectable and undetectable distributions is reversed. The overall distribution observed in the presence of a radar transmission is skewed toward higher speeds relative to the undetectable distribution.

3.2 Comparisons of Mean Speeds and Proportion of Vehicles Exceeding Speed Levels.

The results of additional analyses are provided for those highway facility groups noted above for which statistically significant differences in the cumulative speed distributions were observed.
3.2.1 Interstate Highways. Mean speeds and the percent of vehicles exceeding speed levels in five mph increments under both radar conditions are provided in Table 3.2 for the interstate highways sampled that exhibited significant differences between undetectable and detectable distributions. Al so shown are the absolute differences between these parameters as a function of the two conditions. In all cases, the mean speeds observed on the interstate highways differ significantly ($p<.05$) as a function of radar condition. On New York, Texas and New Mexico interstates, the mean speeds observed in the presence of detectable radar were lower than those observed when no radar transmission was detectable. For passenger vehicles, these differences ranged from 1.6 to 2.6 mph . Differences in mean truck speeds ranged from 1.3 to 3.7 mph . In Ohio, mean speeds of trucks on $65 / 55 \mathrm{mph}$ interstates were 1.48 mph jower in the presence of radar. Average truck speeds on 55 mph interstates did not differ significantly. Nor were significant differences in mean passenger vehicle speeds observed on either 65 or 55 mph Ohio interstates as a result of the introduction of detectable radar.

Results of the analysis of the proportion of vehicles exceeding five mph incremental speed levels follows a pattern similar to that for mean speeds. Statistically significant decreases in the proportion of both cars and trucks exceeding the speed limit were observed on all interstate highway groups sampled in New York, Texas and New Mexico and in trucks on Ohio interstates when detectable radar was present. No significant change in the proportion of passenger vehicles speeding was observed on Ohio 55 mph interstates. On 65 mph highways in Ohio, an increase in the proportion of cars exceeding 65 mph was observed in the detectable sample. Only the proportion of cars exceeding the limit by more than ten mph is statistically smaller on these roads under the undetectable condition.

TEXAS
55 MPH 4 LANE passenger vehicles

TEXAS
55 MPH 4 LANE TRUCKS

- - DETECTABLE $\quad-* *$ UNDETECTABLE

Figure 3.8 Speed distributions on TX 55 mph four lanes.

TEXAS

55 MPH 2 LANE PASSENGER VEHICLES

TEXAS
55 MPH 2 LANE TRUCKS

Figure 3.9. Speed distributions on TX 55 mph two lanes.

NEW MEXICO
55 MPH 4 LANE DIVIDED PASSENGER VEHICLES

- DETECTABLE $\quad-* \cdot$ UNDETECTABLE

NEW MEXICO
55 MPH 4 LANE DIVIDED trucks

\rightarrow DETECTABLE $\quad-* \cdots$ UNDETECTABLE
Figure 3.10. Speed distributions on NM 55 mph four lanes.

NEW MEXICO
55 MPH 2 LANE PASSENGER VEHICLES

NEW MEXICO 55 MPH 2 LANE TRUCKS

- DETECTABLE $\quad-\cdots \cdots$ UNDETECTÁBLE

Figure 3.11. Speed distributions on NM 55 mph two lanes.

OHIO
25 MPH passenger vehicles

OHIO
35 MPH
PASSENGER VEHICLES

- DETECTABLE $\quad \cdots \cdots$ UNDETECTABLE

Figure 3.12 . Speed distributions on OH 25 and 35 mph roads.

NEW YORK 30 MPH PASSENGER VEHICLES

Figure 3. 13. Speed distributions on NY 30 mph roads.

NEW MEXICO
45 MPH
passenger vehicles

Figure 3.14. Speed distributions on NM 45 mph road.

Table 3.2. Differences in mean speeds and proportion of vehicles exceeding the speed limit on rural interstate highways as a function of radar condition.

STATE	SPEED LIMIT	VEHICLE TYPE	RADAR		PERCENT					
			COND.	N	MEAN	>55	>60	>65	>70	>75
OH	65/55	PASS	D	2253	63.19	95.03	77.98	40.26	6.48	. 53
			U	2049	63.15	94.49	69.99	35.58	7.32	1.12
			Difference		. 04	. 54	7.99*	4.68*	-. 84	-.59*
OH	65/55	TRUCK	D	2312	56.50	71.76	16.22	1.95	. 09	. 00
			U	2197	57.98	75.83	27.08	4.14	. 36	. 05
			Difference		-1.48*	-4.07*	-10.86*	-2.19*	-. 27	-. 05
OH	55	PASS	D \& U distributions not significantly different							
			0	330	54.89	53.94	6.67	. 00	. 00	. 00
OH	55	TRUCK	\cup	292	54.45	40.75	12.33	1.37	. 00	. 00
			Difference		.44*	13.19*	-5.66*	-1.37*	. 00	. 00
	55	PASS	0	1401	61.42	89.94	63.38	28.41	2.78	. 30
NY			U	1274	63.59	95.45	78.81	35.16	6.04	. 71
			Difference		-2.17*	-5.51*	-15.43*	-6.75*	-3.26*	-. 41
NY	55	TRUCK	D	910	57.22	73.52	26.92	4.62	. 22	. 00
			U	894	59.27	81.99	40.04	8.61	. 89	. 11
			Difference		-2.05*	-8.47*	-13.12*	-3.99*	-. 67	-. 11

[^0]Table 3.2. (Cont inued from preceding page)

STATE	SPEEDLIMIT	VEHICLE TYPE	RADAR		PERCENT					
			COND.	N	mean	>55	>60	>65	>70	>75
TX	65/60	PASS	D	393	62.11	90.84	74.05	32.82	4.33	. 25
			U	404	63.67	94.55	78.47	45.30	8.66	1.98
			Difference		-1.56 *	-3.71*	-4.42	-12.48*	-4.33*	-1.73*
TX	65/60	TRUCK	D	346	58.30	83.82	32.66	4.34	. 29	. 00
			U	328	61.32	92.38	59.15	22.87	6.10	. 61
			Difference		-3.02*	-8.56*	-26.49*	-18.53*	-5.81*	-. 61
TX	55	PASS	D \& U distributions not significantly different							
TX	55	TRUCK	D	56	55.24	62.50	14.29	. 00	. 00	. 00
			U	65	58.92	86.15	46.15	12.31	. 00	. 00
			Difference		-3.68*	-23.65*	-31.86*	-12.31*	. 00	. 00
NM	65	PASS	0	1086	63.09	93.09	73.39	39.78	9.67	1.66
			U	1155	64.78	93.33	80.17	54.20	15.84	3.72
			Difference		-1.69*	-. 24	-6.78*	-14.42*	-6.17*	-2.06*
NM	65		D	612	61.22	90.85	67.65	21.41	2.29	. 33
		truck	U3	598	62.52	88.80	71.07	39.46	10.87	2.17
			Difference		-1.30*	2.05	-3.42	-18.05*	-8.58*	-1.84*
NM	55	PASS	D	225	58.24	70.67	43.56	12.89	. 89	. 00
			U	209	60.79	82.78	60.26	26.32	3.83	1.44
			Difference		-2.55*	-12.11*	-16.70*	-13.43*	-2.94*	-1.44
NM	- 55	TRUCK	D \& U distr	tions	not signi	icantly dif	fferent			

[^1]A useful way to capture both the direction and magnitude of the influence of detectable radar on the proportion of vehicles travelling at the various speed levels is to construct a ratio of the undetectable (U) and detectable distributions within each speed level. If no differences in speeds were observed as a function of radar condition, the ratios of the proportion of vehicles in a speed category when observed in the absence of radar to the proportion observed in the presence of a detectable transmission would in all cases be 1.0 except for small variations due to sampling error. A ratio greater than 1.0 would result if the proportion of vehicles was greater in the U sample than in the D sample. If the ratio is less than 1.0 , then the reverse is true. Because the frequency of vehicles travelling in each higher speed group becomes increasingly smaller, the absolute differences due to radar condition also become progressively smaller in the higher speed levels. The U:D ratios allows a direct comparison of the relative effect of radar at the various speed levels. Caution must be used in interpreting these ratios, however, since they depict proportionally larger differences within progressively smaller groups of vehicles at the higher speed levels.

Figure 3.15 illustrates the U:D ratios for vehicles observed on the highest speed limit interstate highways sampled in each of the states. Ratios are shown only for those speed levels at which the underlying difference between U and D samples was determined to be statistically significant. With the exception of the ratios for passenger vehicles on Ohio interstates, all of the ratios are greater than 1.0. Among passenger vehicles, the ratios for all cars exceeding the speed limit by more than five mph are 1.24 in New York, 1.64 in New Mexico, and 2.0 in Texas. For trucks, the ratios for speeds greater than five mph over the speed limit are 1.49, 1.67, 4.75, and 5.27 for New York, Ohio, New Mexico and Texas, respectively. The ratios increase at the higher speed levels, indicating the proportionally greater impact of detectable radar at higher speeds. The proportion of passenger vehicles exceeding 65 mph in Ohio is significantly larger when radar was detectable. The associated ratio is 0.88 . However, the proportion of cars exceeding 75 mph , while very small, is more than twice as great when no radar is detectable.

Figure 3.16 depicts the U:D ratios for the 55 mph interstates sampled in Ohio, Texas and New Mexico. Again, ratios are shown only for those speed levels where significant differences were found between the detectable and undetectable distributions. In some cases, at the highest speed levels, no ratio is shown because no vehicles in the detectable sample were observed at those speeds. The U:D ratio in that case is indeterminate. As indicated in Figure 3.16, the proportion of trucks on Ohio 55 mph interstates exceeding the speed limit by more than five mph was nearly twice (1.85) as great when radar was not detectable than when a detectable signal was transmitted. On comparable Texas highways, the proportion of trucks exceeding the speed limit by more than five mph was more than three times as great when no radar was detectable. In New Mexico the truck ratios are of comparable magnitude but do not reach statistical significance. For passenger vehicles, the U:D ratios for vehicles exceeding the speed limit by more than five and ten mph are 1.38 and 2.04, respectively.
3.2.2 Non-Interstate 55 mph Highways. Results of the comparison of mean speeds and proportion of vehicles exceeding the speed levels for detectable and undetectable speed samples taken on non-interstate 55 mph rural highways are summarized in Tables 3.3. As shown previously, the differences between

OHIO
65/55 MPH INTERSTATES RATIO OF U \& D DISTRIBUTIONS

Ratlos shown only for apeed levels at which U e D distribution difler signif.

TEXAS
65/60 MPH INTERSTATES RATIO OF U \& D DISTRIBUTIONS

Ratios shown only for speed levels at
which $U \& D$ distributiont difter algnif.

NEW YORK
55 MPH INTERSTATES RATIO OF U \& D DISTRIBUTIONS

Ratlos shown only for speed lavele at which U A D diatributions differ signif.

NEW MEXICO
65 MPH INTERSTATES RATIO OF U \& D DISTRIBUTIONS

Ration shown only for seed levela at which U A D distributiona differ signif.

Figure 3.15 U:D ratios for highest speed interstates

OHIO
55 MPH INTERSTATES RATIO OF U \& D DISTRIBUTIONS

IIIIV trucks

Ration shown only for speed fevele at which U\& D diafributions differ signif.

TEXAS
55 MPH INTERSTATES RATIO OF U \& D DISTRIBUTIONS

Ratios shown only for speed levels at which U a dideributions differ signif.

NEW MEXICO 55 MPH INTERSTATES RATIO OF U \& D DISTRIBUTIONS

Ratios shown only for apead levele at which $U \& D$ distributions differ signif.

Figure 3.16 U:D ratios for urban interstates

Table 3.3. Differences in mean speeds and proportion of vehic les exceeding the speed limit on non-interstate 55 mph highways as a function of radar condition.

[^2]undetectable and detectable speed distributions on these highways reached significance only in Texas and New Mexico. Truck speeds on both two and four lane highways in Texas averaged more than 4 mph faster when radar was not detectable. Mean passenger vehicle speeds were significantly higher, but by only 0.9 mph , in the undetectable condition on the four lane divided facilities. Passenger vehicle speeds on the comparable New Mexico roadways averaged about 2 mph faster in the absence of radar. Average truck speeds on these roads were also about 2 mph greater in the undetectable sample, but these differences failed to reach statistical significance.

Significant differences between the detectable and undetectable distributions in terms of the proportion of vehicles exceeding the speed limit by various amounts are illustrated by the U:D ratios shown in Figure 3.17. The proportion of trucks exceeding the speed limit by more than five mph was more than twice as large when speeds were measured in the absence of detectable radar on the four lane highways and nearly six times greater on two lane roads. In New Mexico differences between the two radar conditions did not reach statistical significance due to the small sample sizes. The proportion of passenger vehicles exceeding the speed limit by more than five and ten mph was greater among the undetectable sample.
3.2.3 Low Speed Roads. Differences between the detectable and undetectable speed distributions on low speed urban roadways reached statistical significance on the 25 and 35 mph roadways in Ohio, the 30 mph segments in New York, and the 45 mph road in New Mexico. The results of the analyses of these speed distributions are shown in Tables 3.4 and Figure 3.18. Average passenger vehicle speeds were 3 and 1.8 mph faster on the 25 and 35 mph Ohio streets when radar was not detectable. Paradoxically, the average speed of cars on the New Mexico 45 mph road was 3.6 mph faster when radar was detectable.

The proportion of cars exceeding the speed limit by more than 10 mph was more than twice as large on the Ohio 25 mph facility when radar was not detectable. Smaller, but still significant, increases in the proportion of cars exceeding the speed limit by more than five mph were observed on the Ohio 35 and New York 30 mph facilities when no radar was detectable. On the New Mexico 45 mph facility, the U:D ratio for cars travelling greater than 55 mph is 0.28 . This indicates that more than three times as many cars exceeded the speed limit by more than 10 mph when radar was detectable.

3.3 Speed Variance as a Function of Radar Condition

Comparisons of the variation of speeds as a function of radar condition were made for those facility groups for which the detectable and undetectable cumulative distributions differed significantly. An F statistic was used to compare the variances (the square of the standard deviations) for the speeds collected in the presence and absence of detectable radar. The results of these comparisons are shown in Table 3.5. For trucks, variability is reduced when a detectable signal is present. This reduction is statistically significant on the interstate highways with the fastest speed limits in each of the sampled states and on 55 mph interstates in Ohio. Differences in speed variability among passenger vehicles are less uniform. Variability was significantly reduced among cars when detectable radar was present on 65 mph interstates in New Mexico and 55 mph four lane roads in Texas. On New York

TEXAS
55 MPH 4 LANE DIVIDED RATIO OF U \& D DISTRIBUTIONS

Rafios hown oniy for speed levela at which U \& distributions differ sionit.

NEW MEXICO
55 MPH 4 LANE DIVIDED RATIO OF U \& D DISTRIBUTIONS

Ratios hown only for speed tovela at which U a diatribution differ signit.

TEXAS
55 MPH 2 LANE RATIO OF U \& D DISTRIBUTIONS

slili TRUCKS

Ratios shown only for spend levele at which $U \& D$ distributions differ aignif.

NEW MEXICO
55 MPH 2 LANE RATIO OF U \& D DISTRIBUTIONS

Ratios hown only for apeed levels at which U 1 D distributions difter signis.

Figure 3.17 U:D ratios for 55 mph non-interstate highways

Table 3.4. Differences in mean speeds and proportion of vehicles exceeding the speed limit on low speed roadways as a function of radar condition.

STATE	SPEED LIMIT	TRAVEL LANES	VEHICLE TYPE	RADARCONO.	N	MEAN	>25	>30	>35	PERCENT		>50	>55	>60
										>40	>45			
OH	25	2/4	PASS	D	185	31.44	91.89	62.16	20.54	3.78	1.08	-	-	-
				U	100	34.44	96.00	81.00	52.00	15.00	. 00	-	-	-
				Difference		-3.00*	-4.11	-18.84*	-31.46*	-11.22*	1.08	-	-	-
OH	35	2/4	PASS	D	420	38.02	-	-	68.10	36.90	15.00	2.14	. 00	-
				U	278	39.82	-	-	78.78	50.36	22.30	3.96	. 72	-
				Difference		-1.80 *	-	-	-10.68*	-13.46*	-7.30*	-1.82	-. 72	-
NY	30	2/4	PASS	0	307	33.52	-	68.73	40.07	17.59	3.91	. 00	-	-
				U	238	35.39	-	82.77	54.20	23.95	7.56	1.26	-	-
				Difference		-1.87*	-	-14.04*	-14.13*	-6.36	-3.65	-1.26	-	-
NM	45	2/4	PASSS	0	46	49.55	-	-	-	-	71.74	56.52	23.91	8.70
				u	60	45.97	-	-	-	-	63.33	23.33	6.67	1.67
				Difference		3.58*	-	-	-	-	8.41	33.19	17.24*	7.03
OH	50	2/4	PASS											
OH	45	2/4	PASS											
OH	40	2/4	PASS											
NY	45	2/4	PASS											
NY	40	2/4	PASS											
NY	35	2/4	PASS	D \& U distr	tions	ot sign	cant ly	fferent						
NM	55 urban	2/4	PASS											
NM	40	2/4	PASS											
NM	35	2/4	PASS											
NM	55	2/4	PASS											
NY	55	2/4	PASS											

OHIO
25 MPH
RATIO OF U \&D DISTRIBUTIONS

Ratios shown only for speed lovels at which U A distributiona dilfer signif.

NEW YORK
 30 MPH
 RATIO OF U \& D DISTRIBUTIONS

Ratios hown oniy for apeed levels at
which $U \in D$ diatributions difter signif.

OHIO
35 MPH RATIO OF U \&D DISTRIBUTIONS

Ratios shown only for speed levele at which U D distributiont differ elgnif.

> NEW MEXICO 45 MPH
> RATIO OF \cup \& D DISTRIBUTIONS

Ratios shown only for epeed levele at which U $\&$ distributions difter signlt.

Figure 3.18 U:D ratios for low speed roads

Table 3.5. Standard deviations of passenger vehicle and truck speeds measured in the presence (D) and absence (U) of detectable radar.

STA	FACILITY CLASS	$\mathrm{D}_{\mathrm{UASSENGER}}^{\mathrm{U}} \mathrm{VEH}$			D	$\underset{U}{\text { TRUCK }}$	F
OH	65/55 mph Interstates	5.01	5.09	1.03	3.63	4.24	1.36*
	55 mph Interstates				3.44	4.94	2.06*
	$35 \mathrm{mph} 2 / 4$ Lane	6.07	6.38	1.10			
	$25 \mathrm{mph} 2 / 4$ Lane	4.72	5.10	1.17			
NY	55 mph Interstates	5.05	4.52	1.25*	4.15	4.62	1.24*
	$30 \mathrm{mph} 2 / 4$ Lane	6.36	6.38	1.01			
TX	65/60 mph Interstates	5.38	5.46	1.03	3.83	5.10	1.77*
	55 mph Interstates				3.89	4.66	1.44
	55 mph 4 Lane Divided	5.35	5.84	1.19*	5.13	5.63	1.20
	55 mph 2 Lane				5.43	5.77	1.13
NM	65 mph Interstates	5.94	6.38	1.15*	4.88	6.83	1.96*
	55 mph Interstates	5.69	6.07	1.14			
	55 mph 4 Lane Divided	6.47	5.88	1.21			
	55 mph 2 Lane	7.47	7.57	1.03			
	$45 \mathrm{mph} 2 / 4$ Lane	7.01	5.71	1.51			

interstates, variability was significantly greater when a radar signal was detectable.

3.4 Driver Response to the Onset of Detectable Radar

Observations of driver response to the sudden onset of detectable radar were made in each of the four sample states. The signal received by detector equipped drivers is comparable to that encountered by drivers targeted by law enforcement personnel using "instant on" radar. Because the observers had no legitimate law enforcement function, considerable caution was exercised in the timing of signal propagation to minimize the potential for hazardous vehicle interactions in the event of severe driver response to the radar transmission. No systematic effort was made to observe only those vehicles with radar detectors. The observations were made both during daylight hours and, to a lesser extent, in darkness. The later observations were conducted to make the onset of brake lights easier to detect.

Consistent with similar observations reported by Ciccone et al (1987), instances of braking were observed in response to the radar transmission. Although no attempt was made to establish the probability of occurrence, braking events were observed in only a very low proportion of the sudden onset trials among either passenger vehicles or trucks. More frequently observed, but also more difficult to ascertain, were instances of apparent slowing in response to the radar. It appears that some drivers using detectors simply back off the accelerator. In a very few cases, few enough to be remembered individually quite distinctly by the observers, more dramatic responses to radar onset were evoked. These consisted of rapid lane changes and, in at least one instance, sufficiently extreme braking that the change in vehicle weight distribution was clearly evident.

4.0 DISCUSSION AND CONCLUSIONS

4.1 The Influence of Radar Detectors on Traffic Speeds
 Overall, the weight of evidence clearly demonstrates that radar detectors do have an influence on overall traffic speeds. The observed nature of this influence is the reduction of the speeds of some vehicles in the presence of a radar signal. The number of vehicles influenced and the magnitude of the speed reduction vary as a function of the states sampled, highway facility type, and vehicle classification. In general, the data show that speed reductions are seen among a larger portion of the traffic stream:
 - in Texas and New Mexico, where traffic densities are lower,
 - on higher class facilities, where speed limits are higher, and,
 - for trucks, which are more likely to be equipped with radar detectors and CB radios.

The speed parameters affected when speed reductions were observed include: the average speed, the proportion of vehicles exceeding the speed limit, and variability among vehicle speeds. These parameters, in turn, produced differences in cumulative speed distributions. For some highway types neither the cumulative speed distributions nor the separate speed parameters differed in any way that could be attributable to the use of radar detectors. Taken by themselves, such results are not particularly surprising; they merely suggest that the influence of radar detectors is not all pervasive on all roads.
4.1.1 Detector Influence on Average Speeds. On those highways where differences were observed between the overall speed distributions as a function of radar condition, mean speeds were generally lower when a detectable radar signal was present. The magnitude of this difference varied considerably. On highways with speed limits of 55 mph or more, average truck speeds ranged from less than 1 to more than 4 mph slower as a consequence of the detectable radar. The influence on passenger vehicles on these roads was somewhat less. Average speeds were about 1 to 2.5 mph slower in the detectable sample. Reductions in average vehicle speed were seen on both interstate and non-interstate highways, but less frequently on the latter. When it was observed, the magnitude of reduction was at least as great on the non-interstate highways.

Some evidence for a detector influence on overall traffic speeds on lower speed urban roads was observed. On two low speed facility groups in Ohio (25 \& 35 mph) and one in New York (30 mph) significantly lower average speeds were observed in the detectable condition. Conversely, on the 45 mph New Mexico road, mean speeds were higher when radar was detectable. Because the opportunity for many speed influencing factors to be operating differentially on vehicles in the detectable and undetectable speed samples is greater on city and town streets than on the higher class highways, differences in the speeds measured under the two radar conditions are more likely to reflect influences in addition to radar detectors. Speed distributions developed from speed samples on these facilities, for example, are more prone to sampling differences arising from differential vehicle platoons in the two radar conditions. Also, the proportion of vehicles that are included in both the detectable and undetectable samples, while unknown in all cases, is likely to be considerably smaller in the higher density urban samples.

The slower speeds observed in the presence of detectable radar should not be misinterpreted to imply that radar detectors enhance highway safety by reducing speeds. Such arguments are spurious because the "safety effect" is illusory. The downward influence of detectors on speeds only occurs when a detectable transmission is present. On most roads, most of the time, no signals are present.
4.1.2 Influence on the Proportion of Vehicles Exceeding the Speed Limit. The proportion of vehicles exceeding the speed limit generally decreased in the presence of detectable radar. Typically, on those roads that differed, the proportion of vehicles exceeding the posted speed limit by more than five mph was on the order of 1.5 to 5 times greater when radar could not be detected. In general, this disparity between the two radar conditions increased at the higher speed levels. As suggested previously, comparisons of the relative proportion of vehicles at the highest extreme of the speed distribution need to be qualified carefully. The relative influence of detectors on speeds increases at the higher speeds, but the absolute number of vehicles travelling at the extreme speeds is quite small. Thus, while the impact of the detectable signal may be substantial on some specific individuals, the influence on the overall traffic stream is slight.

In two instances, the proportion of vehicles exceeding the speed limit was greater in the detectable condition. On the New Mexico 45 mph road, this may well be an artifact of a small sample size combined with a large turn over of vehicles between the two samples. Less open to this interpretation is the analysis of passenger vehicle speeds on Ohio 65 mph interstates. Compared to similar highways sampled in the other states, a relatively small percentage of vehicles exceeded the speed limit under either condition. When no radar signal was present, 35 percent of the passenger vehicles exceeded the speed limit. This increased to 40 percent when a detectable signal was transmitted. Some of this difference is accounted for by the vehicles exceeding 75 mph . A significantly greater proportion of the undetectable sample was included in this group. The absolute number of vehicles in this portion of the distribution is too small to account for all of the difference in the $>65 \mathrm{mph}$ group.
4.1.3 Detector Influence on Speed Variability. On those highway facilities where statistically significant differences in speed variance were observed as a function of radar condition, the variability of truck speeds was consistently smaller in the presence of a radar transmission. Changes in the variability of passenger vehicle speeds attributable to radar condition were less consistent. Though greater for trucks, changes in variability were small for both vehicle classifications.

4.2 Detector Influence on Braking Behavior

A few aberrant, and perhaps dangerous braking maneuvers were observed that could be attributable to detector use. The occurrence was so infrequent that it was impractical to compute a rate or other meaningful statistic. Those manuevers that were observed did not result in traffic conflicts or accidents. It is possible that similar aberrant braking could be exhibited by non-detector users when suddenly encountering an enforcement symbol.

4.3 Assessing the Impact Radar Detectors on Highway Safety

An assessment of the impact of radar detectors on traffic safety requires consideration of the assumptions underlying possible relationships between detector usage and safety. Further, consideration must be given to methodological problems that must be overcome in order to fully define that relationship. Finally, there are practical considerations that must be addressed.
4.3.1 Underlying Assumptions. A basic assumption made in most attempts to examine the relationship between radar detector usage and traffic safety is that vehicular speed is related to crash severity and/or occurrence. This assumption has a logical appeal and has had empirical support from crash tests and other research. Test data show, and the laws of physics dictate, that crashes at higher speeds result in greater damage to vehicles and occupants. There has also been evidence gathered that would suggest that greater variability in traffic speed increases the probability of a crash. This variability can result when vehicles travel at speeds greater or less than the average speeds of vehicles on a given roadway.

If these assumptions are correct, then establishment of a relationship between radar detector usage and speed would provide evidence for an influence of detectors on traffic safety. In this context, that use implies that the behavior of the user is altered as a consequence of the information provided by detectors. For detector use to have a positive influence, speeds or deviations from mean traffic speeds of the users would have to be reduced. A negative impact of use on traffic safety would accrue if speeds or speed variation was increased.
4.3.2 Methodological Issues. Given that the assumption of the relationship between speed and traffic safety is valid, it remains to be demonstrated that detector usage influences speed. Basically, there are two methods that can be applied to this determination. The most definitive is the experimental (or quasi-experimental) method, which directly assesses cause and effect. The other method is correlational, which shows only concomitant occurrence, and relies upon an accumulation of positive findings to imply cause and effect.

The studies thus far conducted have been correlational in nature. In these studies it has been necessary that certain speed or crash behaviors be observed or reported. Howrver, this alone is not sufficient to prove the relationship. It must be further shown that the behaviors observed were caused by detector usage.

The studies attempting to define this relationship using the correlational method have been able to address only the necessary condition, leaving the sufficient condition untested, or addressed in a methodologically flawed manner. In the current study, for example, the data indicate that some detector users decrease speeds in the presence of a radar signal. Though based on essentially correlational data, this result is consistent with a position that the behavior of detector users is influenced by the device. Since speeds and, to some extent, speed variability are reduced, a positive influence of detectors might be posited. The rationale for disputing such a claim, of course, is that the speed of these detector users was higher before the radar signal was received. The critical information that is not known is whether the
original higher speed was selected because of information made available by the detector or if the only behavior affected was the subsequent speed reduction. The proportion of detector users traveling at or below the speed limit and thus unaffected by the presence of a radar signal is also not known. There are, of course, non-detector users who speed and it is not known if the ratio of speeders to non-speeders in the non-detector population is any greater than that in the user population.

An idealized experimental approach to determining the relationship between detector use and traffic safety might be to select a sample of naive drivers at random from the population, divide them into two groups, issue detectors to one group, then compare the crash records after a period of time. Unfortunately, in addition to being difficult to arrange, this approach would be both costly and fraught with ethical problems. Other approaches that have been suggested or considered also pose major implementation problems or simply will not address the question.
4.3.3 Practical Issues. Cost and implementation limitations make it unlikely that an experimental method can be employed to define a causal relationship between detector use and traffic safety. Consequently, it will require an accumulation of correlational type evidence to provide this insight. However, this accumulation would necessarily be the product of many studies, and the relationship defined would still be equivocal.

This leads to the question of the practicality of pursuing these correlational studies. Simply stated, the question is; Is the potential negative influence of radar detectors on traffic safety of sufficient magnitude to warrant the expenditure of the funds necessary to collect the evidence? At present there is not enough information to answer this question with precision. Based on the information developed in this and other studies, it can only be addressed in a subjective way.

4.4 Recommendations

At this time it is not recommended that further investigation of the relationship between radar detectors and highway safety be undertaken by NHTSA. This recommendation is derived from the subjective comparison of the complex assumptions underlying that relationship, the methodological difficulties posed, and the practical consideration of the cost of further study versus the potential benefits that might accrue.

This recommendation should not be taken as an indication that detector usage has a positive or even a neutral influence on traffic safety. The authors interpretation of the data collected is, in fact, that the influence of radar detectors is negative. If they have no other influence, the use of detectors undermines efforts to increase the perceived level of speed enforcement. Such efforts are directed toward instilling the belief that the level of enforcement is higher than manpower and budgetary constraints actually allow. The immediate goal of increasing the perception of enforcement is to exert a positive influence on controlling traffic speeds. It has been suggested that radar detectors extend the speed controlling influence of enforcement since the presence of enforcement is made known to more drivers. Any benefit accrued from detector use in this sense, however, is likely to be more than offset by the lessening of uncertainty about the presence of enforcement when, as is most often the case, no enforcement is being conducted.

On balance, this untoward influence of radar detectors and perhaps the devices themselves will likely be obviated through advances in enforcement technology and possibly as a consequence of legal actions.

5.0 REFERENCES

Ciccone, M. A., Goodson, M., and Pollner, J. Radar detectors and speeds in Maryland and Virginia. Insurance Institute for Highway Safety, Washington, D.C., June, 1987 (Draft).

Lund, A. K. A critique of "A Comparison of the Automobile Accident Rates of Radar Detection Device Users and Non-Users". Insurance Institute for Highway Safety, Washington, D.C., May, 1988.
 manufacture, sale, use, and possession of radar detectors. Pikesville, Maryland, August, 1986.

Pezoldt, V. J. The influence of radar detectors on highway traffic speeds. Proceedings of the Third Annual South Texas Symposium on Human Factors and Ergonomics, May, 1987.

Pezoldt, V. J. and Brackett, R. Q. The influence of radar detectors on Texas highway traffic speeds. Final report to the Texas State Department of Highways and Public Transportation, Texas Transportation Institute, Texas A\&M University, College Station, Texas, September, 1987.

Pigman, J. G., Agent, K. R., Deacon, J. A. and Kryscio, R. J. Evaluation of unmanned radar installations. Research Report UKTRP-87-34, Transportation Research Program, University of Kentucky, Lexington, KY., December, 1987.

Siege1, S. Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill, 1956

Yankelovich, Skelly and White/Clancy Schulman, Inc. A comparison of the automobile accident rates of radar detection device users and non-users. Westport, CT., May, 1987.

APPENDIX A

Speed Data Highway Segments

OHIO DATA COLLECTION SEGMENTS

SEGMENT	HIGHWAY	LANES	SPDLMT	MILES	FROM - TO
OH1	I80 W	4div	65/55	35	Gate 9, I480-Gate 7, US250, Milan
2	I80 W	4div	65/55	65	Gate 7, Milan - Gate 4, US20, Toledo
3	175 S	4div	65/55	47	1475, Toledo - US224, Findlay
4	US224 E	2	55	26	Findlay E Limit - OH231, Tiffin
5	US224 E	2	55	23	OH231 - OH103, Willard
6	US224 E	2	55	36	OH103 - US42, Lodi
7	171 S	4div	65/55	40	OH83, Burbank - OH97, Lexington
8	171 S	4div	65/55	23	OH97- I270
9	1270	4	55	26	I71 - US23
10	I71 S	4	65/55	43	1270-OH72, Bowersville
11	US42 N	2/4	25	?	1275 - N of Lebanon
12	US42 N	2/4	35	?	1275-N of Lebanon
13	US42 N	2/4	40	?	I275- Begin div. 4m N of Lebanon
14	US42 N	2/4	45	17	1275-N of Lebanon
15	US42 N	2/4	50	?	I275 - N of Lebanon
16	US42 N	4div	55	14	$4 \mathrm{~m} N$ of Lebanon - US35, Xenia
17	US42 N	2	55	27	N of Xenia - London
18	170 W	4	65/55	33	US42-1675, Fairborn
19	I70 W	4	65/55	10	1675-175
20	175 N	4	65/55	30	170-0H47, Sidney
21	I75 N	4	65/55	?	OH65 - US30, Beaverdam
22	175 S	4	65/55	34	OH309 - OH47, Sidney
23	175 S	4	65/55	30	OH47-170
24	175 S	4	55/55	?	OH47-170
25	170 E	4	65/55	3	I75-I675
26	170 E	4	65/55	36	I675-US42
27	170 E	4	65/55	13	US42-I270
28	170 E	4	65/55	44	I270-US60, Zanesville
29	170 E	4	65/55	25	US60-177, Cambridge
30	I70 E	4	55/55	32	I75-177
31	177 N	4	65/55	57	US40 - US30
32	US30 E	4	55	10	OH94- OH 21
33	OH21 N	4	50	20	US30-I76
34	OH21 N	4	55	20	US30-I76
35	OH261 E/W	2	35	18	OH21-177
36	190 W	4	65/55	17	OH7 - OH45, Austinberg
37	US20 W	4	45	21	OH45-OH86, Painsville
38	US20 W	4	35	21	OH45 - OH86, Painsville
39	US20 W	4	50	21	OH45-OH86, Painsville
40	US20 W	4	40	21	OH45 - OH86, Painsville
41	US20 W	4	25	20	OH615 - 20th St., Cleveland
42	US20 W	4	35	20	OH615 - 20th St., Cleveland

NEW YORK DATA COLLECTION SEGMENTS

SEGMENT HIGHWAY LANES SPDLMT MILES FROM - TO

NY1	190 E	4div	55	37	Int 59, NY60 - Int 55, Seneca
2	190 E	4div	55	10	Int 55 - Int 50
3	190 E	4div	55	56	Int $50-$ Int 46, Henrietta
4	1390 S	4div	55	53	NY5 - NY17, Avoca
5	NY17 E	4div	55	38	I390-NY14, Horseheads
6	NY17 E	4div	55	55	NY14-NY201, Binghamton
7	NY17 E	4div	55	42	I88 E - NY97, Hancock
8	NY17 E	4div	55	75	NY97-184
9	187 N	4div	55	71	Int 17 - Int 21, 190
10	187 N	4div	55	14	Int 21A - Int 24
11	City	4	30	16	Albany city streets
12	City	4	40	16	Albany city streets
13	US20 W	4	40	3	NY155-Begin 55 mph
14	US20 W	4	45	3	NY155-Begin 55 mph
15	US20 W	2	55	20	188 - Sloansville
16	US20 W	4div	55	24	Sloansville - NY166
17	US20 W	2/4	55	42	NY166(End Div.) - NY46, Pinewoods
18	US20 W	4div	55	15	NY46 - NY13, Cazenovia
19	US92 W	2	50	12	US20 - I481
20	US92 W	2	55	12	US20 - I481
21	City	4	30	5	Syracuse city streets
22	City	4	30	5	Syracuse city streets
23	190 W	4div	55	11	Int 35 - Int 39
24	190 W	4div	55	48	Int 39 - Int 43, NY21
25	190 W	4div	55	31	Int 44, NY96-Int47, NY19
26	NY19 S	2	55	9	190 - US20
27	NY19 S	2	35	9	190 - US20
28	US20 W	2	55	25	NY19 - Alden
29	US20 W	4	55	9	Alden - NY130, Depew
30	US20 W	2	30	34	NY19 - NY130
31	US20 W	2	40	34	NY19 - NY130
32	US20 W	2	45	34	NY19 - NY130
33	NY130 W	2/4	30	6	US20 - US62
34	NY130 W	2/4	40	6	US20 - US62
35	NY130 W	2/4	45	6	US20 - US62
36	US62 S	2/4	30	9	NY130 - NY179
37	US62 S	2/4	35	9	NY130 - NY179
38	190 W	4div	55	34	Int 56, NY179 - Int 59, NY60
39	190 W	4div	55	26	Int 59 - Int 61, PA State Line

TEXAS DATA COLLECTION SEGMENTS

SEGMENT	HIGHWAY	LANES	SPDLMT	MILES	FROM - TO
TX1	TX36 W	2	55	60	TX317-US281, Hamilton
2	TX36 W	2	55	60	US281 - US183, Rising Star
3	TX36 W	2	55	53	US183-LOOP322, Abilene
4	120 W	4div	55	12	LOOP322 - LOOP320
5	120 W	4div	65/60	40	LOOP320 - US84
6	US84 N	4div	55	76	I20 - US380, Post
7	US84 N	4div	55	33	US380 - Loop289S, Lubbock
TX8	US84 N	4div	55	90	Loop289N - TX/NM State Line
TX9	120 E	4div	65/60	58	Big Spring - US84
10	120 E	4div	65/60	40	US84 -L00P320
11	120 E	4div	55	12	L00P320 - L00P322

SEGMENT	HIGHWAY	LANES	SPDLMT	MILES	FROM - TO
NMI	US60 W	2	55	59	Clovis - US84, Fort Sumner
2	US84 N	2	55	42	US60-140, Santa Rosa
3	140 W	4 div	65	58	US84-US285, Clines Corners
4	140 W	4div	65	51	US285 - Begin 55mph, Albuquerque
5	140 W	4div	55	26	Begin 55mph - End 55, Albuquerque
6	I40 W	4div	65	28	Exit 140 - NM279, Laguna
7	I40 E	4div	65	35	NM276-Exit 149
8	125 S	4div	55	3	Gibson Blvd, Albuquerque - End 55mph
9	125 S	4div	65	82	Begin 65 mph - US380, San Antonio
10	US380 E	2	55	63	125-US54, Carrizozo
11	US54 N	2	55	68	US380 - NM3, Duran
12	US285 N	2	55	28	US60, Encino - I40, Clines Corners
13	US285 N	2	55	42	140-125
14			35		Albuquerque "low speed"
15			40		Albuquerque "low speed"
16			45		Albuquerque "low speed"
17			55		Albuquerque "low speed"
18	125 S	4div	65	63	US60, Socorro - Nm52 Elephant Butte
19	125 S	4div	65	75	NM51, T or C - US82, Las Cruces
20	I25S,110W	4div	55	13	Las Cruces
21	I10E, I25N	4div	55	13	Las Cruces
22	110 W	4div	65	11	West of Las Cruces
23	110 E	4div	65	11	West of Las Cruces
24	US82 E	4div	55	68	I25-Alamogordo
25	US82 E	2	55	59	Elk - Artesia
26	US82 E	2	55	31	Artesia - NM529

APPENDIX B

Summary Descriptive Statistics

Table B1. Sumary descriptive statistics
sTATE: OHIO
FACILITY: 65/55 MPH INTERETATE
8EGMENTS: $1,2,3,7,8,10,18,19,20,21,22,23,25,26,27,28,29,31,36$
n MEAN STD DEV

PERCENT EXCEEDING

| | N MEAN | STD DEV | 55 | 60 | 65 | 70 | 75 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DETECTABLE | | | | | | | | | |
| ALL VEH | 4565 | 59.80 | 5.50 | 83.24 | 46.70 | 20.85 | 3.24 | .26 | |
| PASS VEH | 2253 | 63.19 | 5.01 | 95.03 | 77.98 | 40.26 | 6.48 | .53 | |
| TRUCR | 2312 | 56.50 | 3.63 | 71.76 | 16.22 | 1.95 | .09 | .00 | |

UNDETECTABLE

ALL VEH	4246	60.48	5.33	84.83	47.79	19.31	3.72	.57
PASS VEH	2049	63.15	5.09	94.49	69.99	35.58	7.32	1.12
TRUCR	2197	57.98	4.24	75.83	27.08	4.14	.36	.05

Table B2. Summary descriptive statistics
state: OHIO
FACILITY: 55 MPH INTERSTATE SEGMENTS: 9, 24, 30

	N	MEAN	STD DEV	PERCENT EXCEEDING				
				55	60	65	70	75
DETECTABLE								
MLE VEH	735	57.77	5.08	71.43	32.79	9.93	1.22	14
PASS VEH	405	60.12	5.00	85.68	54.07	18.02	2.22	. 25
TRUCK	330	54.89	3.44	53.94	6.67	. 00	. 00	. 00

UNDETECTABLE

ALL VEH	681	57.62	5.82	64.17	34.36	8.96	1.47	.29
PASS VEH	389	60.01	5.27	81.75	50.90	14.65	2.57	.51
TRUCK	292	54.45	4.94	40.75	12.33	1.37	.00	.00

Table B3. Summary descriptive statistics

STATE: OHIO
 FACILITY: 55 MPH 4 LANE DIVIDED 8EGMENTS: 16, 32, 34

Table B4. Summary descriptive statistics

8TATE:

OHIO
FACILITY: 55 MPH 2 LANE
SEGMENTS: 4, 5, 6, 17

UNDETECTABLE

ALL VEH	213	56.83	5.62	65.73	26.76	5.16	.47	.47
PASS VEH	146	57.07	5.17	65.75	26.71	5.48	.68	.68
TRUCR	67	56.30	6.49	65.67	26.87	4.48	.00	.00

Table B5. Summary descriptive statistics
8TATE: OHIO
FACILITY: 50 MPH
8EGMENTS: 15, 33, 39

UNDETECTABLE

ALL VEH	68	52.16	7.32	57.35	32.35	11.76	5.88	.00
PASS VEH	59	52.32	7.59	57.63	35.59	11.86	6.78	.00
TRUCR	9	51.15	5.50	55.56	11.11	11.11	.00	.00

Table B6. Summary descriptive statistics
STATE: OHIO
FACILITY: 45 MPH SEGMENTS: 14, 37

	N	MEAN	STD DEV	PERCENT		EXCEEDING		
				45	50	55	60	65
DETECTABLE 60								
ALL VEH	131	47.58	6.25	67.94	35.11	11.45	3.05	. 00
PASS VEH	123	47.82	6.24	69.11	36.59	12.20	3.25	. 00
TROCR	8	43.98	5.45	50.00	12.50	. 00	. 00	. 00

UNDETECTABLE

ALI VEH	161	48.34	6.39	75.78	42.24	13.66	1.24	.00
PASS VEH	150	48.62	6.39	76.67	44.00	14.67	1.33	.00
TRUCR	11	44.48	5.07	63.64	18.18	.00	.00	.00

Table B7. Summary descriptive statistics
8TATE:
OHIO
FACILITY: 40 MPH
8EGMENT8: 13, 40

UNDETECTABLE

ALL VRH	35	40.91	4.10	57.14	14.29	2.86	.00	.00
PASS VEH	30	40.81	4.28	56.67	13.33	3.33	.00	.00
TRUCK	5	41.47	3.16	60.00	20.00	.00	.00	.00

Table B8. Summary descriptive statistics
STATE: OHIO
FACILITY: 35 MPH
SEGMENTE: 12, 35, 38, 42
PERCENT EXCEEDING
$\begin{array}{llllllll}N & \text { MEAN } & \text { STD DEV } & 35 & 40 & 45 & 50 & 55\end{array}$
DETECTABLE

ALL VEH	431	38.04	6.14	67.75	36.66	15.31	2.55	.00
PASS VEH	420	38.02	6.07	68.10	36.90	15.00	2.14	.00
TRUCR	11	38.79	8.89	54.55	27.27	27.27	18.18	.00

UNDETECTABLE

ALL VEH	280	39.79	6.37	78.57	50.36	22.14	3.93	.71
PASS VEH	278	39.82	6.38	78.78	50.36	22.30	3.96	.72
TRUCK	2	36.15	6.97	50.00	50.00	.00	.00	.00

Table B9. Bummary descriptive statistics
 8TATE: OHIO
 PACILITY: 25 MPH 8EGMENTE: 11, 41

UNDETECTABLE

ALL VEH	100	34.44	5.10	96.00	81.00	52.00	15.00	.00
PASS VEH	100	34.44	5.10	96.00	81.00	52.00	15.00	.00
TRUCK	0	$\mathrm{~N} / \mathrm{A}$	N / A					

Table B10. summary descriptive statistics
8TATE: NEW YORK
FACILITY: 55 MPR INTERETATE EEGMENTS: $1,2,3,23,24,38,39,4,9,10$

PERCENT EXCEEDING
$\begin{array}{llllllll}\text { N MEAN } & \text { STD DEV } & 55 & 60 & 65 & 70 & 75\end{array}$
detectable

ALL VEH	2311	59.77	5.14	83.47	49.03	19.04	1.77	.30
PASS VEH	1401	61.42	5.05	89.94	63.38	28.41	2.78	.50
TRUCK	910	57.22	4.15	73.52	26.92	4.62	.22	.00

UNDETECTABLE

ALL VEH	2168	61.81	5.03	89.90	62.82	24.22	3.92	.46
PASS VEH	1274	63.59	4.52	95.45	78.81	35.16	6.04	.71
TRUCK	894	59.27	4.62	81.99	40.04	8.61	.89	.11

Table B11. Summary descriptive statistics

STATE:	NEW YORR
FACIIITY:	55 MPH 4 LANE DIVIDED
SEGMENTS:	$5,6,7,8,16,18,29$

UNDETECTABLE

ALL VEH	1152	59.78	5.99	79.08	48.61	16.58	3.47	.87
PASS VEH	902	60.41	5.97	82.04	52.99	19.62	4.21	1.11
TRUCK	250	57.51	5.51	68.40	32.80	5.60	.80	.00

Table B12. Summary descriptive statistics
BTATE:
FACILITY:
BEGMENTE:

NEW YORR
55 MPH $2 / 4$ IANE
15, 17, 28, 20, 26

					RCENT	EXCEEDING		
	\mathbf{N}	MEAN	8TD DEV	55	60	65	70	75
DETECTABLE								
ALL VEH	205	54.54	6.33	52.68	20.49	3.90	.00	.00
PA8S VEH	188	54.66	6.29	53.19	21.28	4.26	.00	.00
TRUCK	17	53.22	6.79	47.06	11.76	. 00	.00	.00

UNDETECTABLE

ALL VEH	225	55.59	6.12	54.67	20.44	6.22	.44	.00
PABS VEH	188	55.84	6.08	56.38	21.28	6.91	.53	.00
TRUCR	37	54.29	6.22	45.95	16.22	2.70	.00	.00

Table B13. Summary descriptive statistics

STATE:	NEW YORK
FACILITY:	50 MPH
8EGMENTE:	19

UNDETECTABLE

ALL VEH	25	52.90	4.48	80.00	36.00	.00	.00	.00
PASB VEH	25	52.90	4.48	80.00	36.00	.00	.00	.00
TRUCR	0	N / A						

Table B14. summary descriptive statistics

BTATE:	NEW YORK
FACILITY:	45 MPH
8EGMENTS:	$14,32,35$

UNDETECTABLE

ALL VEH	45	45.57	6.82	64.44	20.00	13.33	.00	.00
PASS VEH	43	45.73	6.91	65.12	20.93	13.95	.00	.00
TROCK	2	42.06	4.18	50.00	.00	.00	.00	.00

Table B15. Summary descriptive statistics
state: FACILITY: BEGMENTS:

NEW YORK
40 MPH
12, 13, 31, 34

DETECTABLE

ALL VEH	97	42.85	4.78	74.23	31.96	6.19	1.03	.00
PASS VEH	91	42.93	4.86	75.82	32.97	6.59	1.10	.00
TRUCK	6	41.72	3.45	50.00	16.67	.00	.00	.00

UNDETECTABLE

ALL VEH	61	40.80	6.27	57.38	32.79	3.28	.00	.00
PASS VEH	57	41.27	6.07	61.40	35.09	3.51	.00	.00
TRUCK	4	33.51	5.97	100.00	.00	.00	.00	.00

Table B16. 8ummary descriptive statistics

8TATE:
FACIIITY: 8EGMENT8:

NEW YORR
35 MPH
27, 37

DETECTABLE	N	MEAN	8TD DEV	PERCENT EXCEEDING			50	55
				35	40	45		
ALL VEH	27	34.60	5.06	40.74	14.81	3.70	. 00	. 00
PASS VEH	24	34.41	5.23	37.50	12.50	4.17	. 00	. 00
TRUCK	3	36.79	3.17	66.67	33.33	. 00	. 00	. 00

UNDETECTABLE

ALL VEH	9	35.05	4.71	66.67	11.11	.00	.00	.00
PASS VEH	9	35.05	4.71	66.67	11.11	.00	.00	.00
TRUCR	0	$\mathrm{~N} / \mathrm{A}$	N / A					

Table B17. Summary descriptive statistics
ETATE: NEW YORK FACILITY: $\quad 30 \mathrm{MPH}$ SEGMENTS: $\quad 11,21,22,30,33,36$

UNDETECTABLE

ALL VEH	249	34.98	6.63	80.32	52.61	22.89	7.23	1.20
PASS VEH	238	35.39	6.38	82.77	54.20	23.95	7.56	1.26
TRUCR	11	26.11	5.88	27.27	18.18	.00	.00	.00

Table B18. Summary descriptive statistics

8TATE: FACILITY: 8EGMENTS:

TEXAS
65/60 MPH INTERSTATE 5, 9, 10

- PERCENT EXCEEDING

MEAN STD DEV
$55 \quad 60 \quad 65 \quad 70$
75
$60.33 \quad 5.08$
$87.55 \quad 54.67 \quad 19.49 \quad 2.44$
.14
$62.11 \quad 5.38 \quad 90.84 \quad 74.05 \quad 32.82 \quad 4.33 \quad .25$ 58.30 3. 3.83 393 346
$83.82 \quad 32.66 \quad 4.34 \quad .29$.00

UNDETECTABLE

ALL VEH	732	62.62	5.42	93.58	69.81	35.25	7.51	1.37
PASS VEH	404	63.67	5.46	94.55	78.47	45.30	8.66	1.98
TRUCR	328	61.32	5.10	92.38	59.15	22.87	6.10	.61

Table B19. Summary descriptive statistics
state:
FACILITY: SEGMENTS:

TEXAS
55 MPH INTERSTATE
4, 11

					RCENT	EXCEED		
	\mathbf{N}	MEAN	STD DEV	55	60	65	70	7 \%
DETECTABLE								
ALL VEH	151	58.35	6.04	72.19	44.37	15.89	2.65	.00
PASS VEH	95	60.18	6.34	77.89	62.11	25.26	4.21	.00
TRUCK	56	55.24	3.89	62.50	14.29	.00	.00	00

UNDETECTABLE

ALI VEH	142	60.02	5.05	88.03	54.93	17.61	1.41	.00
PASS VEH	77	60.95	5.21	89.61	62.34	22.08	2.60	.00
TRUCR	65	58.92	4.66	86.15	46.15	12.31	.00	.00

Table 820. Summary descriptive statistics

STATE:
FACILITY: 8EGMENTS:

TEXAS
55 MPH \& LANE DIVIDED 6, 7, 8

UNDETECTABLE

ALL VEH	669	59.98	5.81	84.30	52.62	17.64	4.19	.90
PASS VEH	528	59.73	5.84	82.77	50.00	16.67	3.22	1.14
TRUCK	141	60.91	5.63	90.07	62.41	21.28	7.80	.00

Table B21. Summary descriptive statistics

STATE:

 FACILITY: SEGMENTS:TEXAS
55 MPH 2 LANE
1, 2, 3

N MEAN STD DEV
DETECTABIE
ALL VEH
332
PASS VEH TRUCR

291
41 56.81
5.53
57.11
5.49
54.66
5.43
67.47
26.8
29.21
8.73
9.62
1.20
.00
51.22
9.76
2.44
1.37
.00

UNDETECTABLE

ALI VEH 296 PASS VEH TRUCR
58.70
5.68
79.05
42.9
13.85
2.70
.68
58.68
5.77
78.46
40.77
15.00
3.08
.77
58.885 .04
$83.33 \quad 58.33$
5.56
.00
.00

Table B22. summary descriptive statistics

STATE:	NEW MEXICO
FACILITY:	65 MPH INTERSTATE
BEGKENTS:	$3,4,6,7,9,18,19,22,23$

PERCENT EXCEEDING
$\begin{array}{lllllll}\text { N MEAN } & \text { STD DEV } & 55 & 60 & 65 & 70 & 75\end{array}$

DETECTABLE

ALI VEH	1698	62.42	5.65	92.29	71.32	33.16	7.01	1.18
PASS VEH	1086	63.09	5.94	93.09	73.39	39.78	9.67	1.66
TRUCR	612	61.22	4.88	90.85	67.65	21.41	2.29	.33

UNDETECTABLE

ALL VEH	1753	64.01	6.62	91.79	77.07	49.17	14.15	3.19
PA88 VEH	1155	64.78	6.38	93.33	80.17	54.20	15.84	3.72
TRUCK	598	62.52	6.83	88.80	71.07	39.46	10.87	2.17

Table B23. Summary descriptive statistics

STATE:
FACILITY:
BEGMENTS:

NEW MEXICO
55 MPH INTERSTATE
5, 8, 20, 21

N MEAN STD DEV
DETECTABLE
ALL VEH PASS VEH TRUCK

314
225
89

UNDETECTABLE

ALL VEH	298	60.11	6.10	79.87	56.04	22.82	3.02	1.01
PASS VEH	209	60.79	6.07	82.78	60.26	26.32	3.83	1.44
TRUCK	89	58.52	5.91	73.03	46.07	14.61	1.12	.00

Table B24. Summary descriptive statistics

8TATE:	NEW MEXICO
PACILITY:	55 MPH 4 LANE DIVIDED
BEGMENTE:	24

UNDETECTABLE

| ALL VEH | 241 | 60.23 | 5.88 | 82.16 | 50.62 | 24.48 | 2.90 | .41 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PASS VEH | 211 | 60.39 | 5.78 | 83.41 | 51.18 | 24.64 | 3.32 | .47 |
| TRUCK | 30 | 59.10 | 6.53 | 73.33 | 46.67 | 23.33 | .00 | .00 |

Table B25. Summary descriptive statistics

STATE:
FACILITY: SEGMENTS:

NEW MEXICO
55 MPH 2 LANE
1, 2, 10, 11, 12, 13, 25, 26
\mathbf{N}

DETECTABLE

ALL VEH PASS VEH TRUCR

395
332
63

UNDETECTABLE

ALL VEH	405	62.08	7.59	85.93	63.21	35.80	11.36	4.44
PASS VEH	350	62.61	7.57	88.29	65.71	38.86	12.29	5.14
TRUCR	55	58.72	6.89	70.91	47.27	16.36	5.45	.00

Table B26. Summary descriptive statistics

BTATE:
FACILITY: 8EGMENTS:

NEW MEXICO
55 MPH URBAN
17

DETECTABLE	N	MEAN	8TD DEV	PERCENT EXCEEDING				75
				55	60	65	70	
ALL VEH	107	55.68	7.02	56.07	27.10	10.28	1.87	. 00
PASS VEH	104	55.85	6.97	57.69	27.88	10.58	1.92	.00
TRUCR	3	49.60	7.13	. 00	. 00	. 00	.00	.00

UNDETECTABLE

ALL VEH	111	57.87	6.71	70.27	40.54	14.41	4.50	.90
PASS VEH	106	57.87	6.79	69.81	40.57	15.09	4.72	.94
TRUCK	5	57.95	5.19	80.00	40.00	.00	.00	.00

Table B27. Summary descriptive statistics

STATE:	NEW MEXICO
FACILITY:	45 MPH
SEGMENTS:	16

UNDETECTABLE

ALL VEH	61	45.98	5.66	63.93	22.95	6.56	1.64	.00
PASS VEH	60	45.97	5.71	63.33	23.33	6.67	1.67	.00
TRUCK	1	$46.32 \mathrm{~N} / \mathrm{A}$	100.00	.00	.00	.00	.00	

Taple B28. summary descriptive statistics

STATE:	NEW MEXICO
FACILITY:	40 MPH
BEGMENTS:	15

DETECTABLE	\mathbf{N}	MEAN	8TD DEV	PERCENT		EXCEEDING		60
				40	45	50	55	
ALL VEH	92	40.57	6.30	47.83	21.74	8.70	2.17	1.09
PASS VEH	88	40.71	6.27	48.86	21.59	9.09	2.27	1.14
TRDCR	4	37.45	7.15	25.00	25.00	.00	. 00	. 00

UNDETECTABLE

| ALL VEH | 161 | 42.03 | 5.56 | 64.60 | 31.06 | 7.45 | 1.86 | .00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PASS VEH | 159 | 42.10 | 5.53 | 64.78 | 31.45 | 7.55 | 1.89 | .00 |
| TRUCR | 2 | 35.97 | 6.27 | 50.00 | .00 | .00 | .00 | .00 |

Table B29. Summary descriptive statistics

STATE:
FACILITY: SEGMENTS:

NEW MEXICO
35 MPH
14

DETECTABLE				PERCENT EXCEEDING				
	\mathbf{N}	MEAN	STD DEV	35	40	45	50	55
ALL VEH	139	37.78	6.02	66.91	35.97	10.07	2.16	.00
PASS VEH	135	37.86	6.04	67.41	36.30	10.37	2.22	.00
TRUCR	4	34.99	5.37	50.00	25.00	.00	.00	.00

UNDETECTABLE

ALL VEH	86	36.54	5.02	62.79	20.93	4.65	1.16	.00
PASS VEH	84	36.59	5.05	63.10	21.43	4.76	1.19	.00
TRUCR	2	34.49	4.18	17.48	50.00	.00	.00	.00

APPENDIX C

KLLHGUFOV－SMAMWOV TWO GROUF IESI

	UESERVED				CUMLILATI VE		
	FREGMENCJE				HE：CRTJVE	FFEWGNEI	1 ± 6
LLm3	GFout	1.	Lriuls．	2	GROUF 1	Chtiun	\because
1	0		0		.0000	． 0000	
2	5		\because		． 0022	.0010	
3	17		11		． 0078	．0063	
4	90		100		． 0497	， 658.	
5	384		502		． 2202	.3001	＊
θ	850		70.		－5\％74	． 6442	
7	$7 力 1$		67		．935\％	．9\％\％	
8	134		127		.9947	.4888	
9	12		19		1．0000	．99\％\％	
10	0		4		1.0010	1．000	
rotals	20\％		2049				

OH GE，以5 MWM IMERETATE：TRUCK

	$\begin{gathered} \text { WE, } \\ \text { WEM } \end{gathered}$				Gumblatab		
					FEAETUE	Frtantu＊	1 E
CLHGG	Encmo	1	GFQum	玉	GFCOUF 1	Ebult	\cdots
1	2		\bigcirc		.0009	－ف¢\％	
\cdots	，		θ		． 00.9	－0036	
3	74		99		．05\％	． 044%	
4	8%		431		－ 204	．241\％	
4	1284		1071		．8578	． 720	＊
6	380		504		． $980{ }^{\text {ct }}$	． 9566	
7	43		8		． 9971	． 9964	
8	2		7		1.0000	． 97%	
9	O		0		1.0000	． 979	
10	0		1		1.0000	1.0000	
101at 6	232		2197				

＊ L MAX $=.10 \mathrm{O}$
区RTTCAL VALUE AT OS LEVEL $=$＂OAO
CFITAGBLVALUE AT OI LEVEL ：O OEOL

KOLMLEUROV-GMIFNOUV TWO GFULIF ikST

LLAS	OESEFVED F EEGUE:NEJE				CUMULATIVE	
					RELAT]VE	FFEGUMCIES
	BROUFO	1	Griout	2	GriUuF 1	GRLUR 2
1	0		0		.0000	-00\%
2	\cdots		1		.0049	- 026
3	8		13		. 0247	.0360
4	49		67		. 143	. 18.4
5	128		120		. 4.593	.4910
6	146		1.41		- 019	- 95
7	64		4%		. 97%	. 974%
8	θ		8		. 9975	. 9747
. 7	1		2		1. 0000	1. 6000
totalus	405		38			

> CRIICAL VALUE AT OE LEVEL $=.976 E$
> CFIIICAL VAUUE AT OJ LEVEL $=.19 G$

```
CHI-SOUARE= 1.220. D.F. = = FTOE. = wite
```

DDAFARMETFIG $16 E T S$

OH GE MEH INTEFSTATE: TRUCE

	Fraumderes			Fumatermeonelumbe	
4 SE	6xum	1 G¢¢	2	arob a	Wnime
1	i	θ		. 0	. 00¢0
2	3	- 8		. 0\%	. 0274
3	15	56		. 06 67	. 1760
4	136	115		. 4606	-5\%5
5	16	83		. 939	. 8767
6	2	32		1.000\%	. 986%
7	\%	4		1.0000	1.0000
TOTALS	330	292			

$\cdots \mathrm{D}$ MAX $=: 1320$

CFITHCAL VALUE AT .OS LEVEL $=.1093$
GEITIGTL VALUE AT :01 LEVEL = 130

FOLFOGOFOV－SMINVOV TWO BFOUF TEET

Lincs	OESEFVED				CUMULATJVE	
	FFGUMtdi ES				FELAIJE	FFtguelatas
	BRELUF	1	GFUUF	2	Gricilf 1	GFibut 2
1.	1.		0		－ 0 ge	． 0 ¢
2	5		0		－ 6 S 1	＂000
3	17		1.1		． 1345	． 0668
4	E		3		－3\％	－玉爰\％
5	56		56		． 6667	－ 6.308
6	3		$4 \times$		．87\％	． 86.
7	17		1 is		． 9760	．981\％
8	3		\because		． 9742	1． 0000
ϑ	1.		¢		1．0000	1．0000
TOTMLE	171		16			


```
        GRJ!JGGB URLUE A: OD LEVEL : - 18,
```


Notrifancistatbs?

4，94	$\begin{gathered} \text { म世Erer } \\ \text { Frato } \end{gathered}$				
					HREGAEHEDS
		कीय\％	\because	Gectil 1	Grout \％
1	0	0		．00\％	.000
2	0	0		－000	． 000
\cdots	6	\cdots		－ 162 c	.120
4	1%	$\%$		． 6216	． O O0
5	9	9		． 8649	． 875
4	4	\％		． 9730	1.0000
7	1.	0		1．0000	1．000\％
T0TALS	37	24			

－ $\mathrm{H} \operatorname{Nax}=.1216$
CFITICAL VAIUE AT OG LEVEL＝．WixG
［F！IJCAL UAl UE AT GA LEVEB＝ 440%

KGLMOLUFGU-SMIFINOU TWG GHOLF fEST
WH SE MFH \Rightarrow GNE: FqGOERGER

QESEFVED
FFEDLENCTES

Clas	Griour:	1	GHOLP
1.	4		\square
2	5		1.
3	8		12
4	42		3
5	74		57
6	37		31
7	6		$?$
8	1		0
0	0		1
T01 1 E	177		146

CUMULAT IVE
HELATJU FFEGUERGTE
BFBUF 1 bHOLI: 2
$.022 \quad .000$
.0 .06
$.0960 \quad 0890$

$.7514 \quad .7329$
-960世 - 945
$.9944 \quad .9720$
$1.0000 \quad .992$
1.0000 1.0000

* D $\mathrm{HAR}=.0440$
 GEITACAL VALUE AT OH LEVEL = 18%

Numpratrate teste \qquad

WH WE MHH a LBEE: TBUCK

GEEEFUED
FFEGLENGAES

Chas	कितो:	matim
1	\%	1
\because	2	4
3	\because	\%
4	17..	11
5	5	26
6	12	15
7	4	3
TCTALS	59	87

FELAT IVE FFGDUEBCIES GTut! 1 Er!nf

$.069 \quad .1791$ 莫
$.559 \quad .433$
$.728 \mathrm{~B} \quad .7313$
-9822 - 96
1.00001 .0000

* D MAX $=.1113$

CFITICAL UALUEAT OS LiUEL $=-242 B$ CR1TICAL UALUE AT :OJ IEVEL = $29 \% 9$

KOLMOGOFOV-GNIFNUN TWO EROUF TEST

CLAGS	QESEFUED				CMMIIAT]VE		
	TEEUEMLAE				FEIATIVE	FFegumb	$1!8$
	GROUF	1.	GRELIF	2	GFOLIF 1	GFOLUF	2
1	\%		0		.000	. C	
2	0		\%		.00	- 0 ¢	
उ	1		O		.144	- 000	
4	\%		1		. 114.4	. 6 B	*
5	95		12		. 4714	, 4.?	
6	Cut		18		. 8.36	. 86.6	
7	\bigcirc		\%		, ¢5\%	- \% ¢\%	
8	3		1.		1.0000	1.0000	
OTMLS	\cdots		!				

OBSEFVED
FHEGUENCIEG

Litmb	GRLut'	1	briour 2
1	0		\%
2	4		1.
3	44		13
4	Ó		4
5	131		79
$\dot{\sigma}$	9 ¢	.	70
\cdots	54		\%
8	9		9
9	0		1
10	0		1
TUTHLS	4%		2\%

CUMLILATIVE

FEGATVE FHEGUENEIES
braut 1 briunt 2
.0000 . 0000

$.114 \% \quad .0504$
. 150 - $1+2$
$.6510 \quad .4964$
$.860 \quad .770$
$.9780 \quad .964$
1.000 9728
$1.9000 \quad .9964$

TOTHES
$4 \% \quad 27 \mathrm{O}$

* D Pris $=-134$

$$
\begin{aligned}
& \text { GFPTICAL VALUE AT "GE LEUEL : } B \text {. OET }
\end{aligned}
$$

OFSEFUED GUMILATIVE

GLASG GFUUF 1 GFUUF 2 GFUNF 1 GHOLF ב
1

$\% 0 \operatorname{tax}=-46$

KOLMOGOFOV-SMIFNOV TWO GWOMF TEST

CLASS	OESEFYED				CUNULIAT IUE:	
	HFEQUNETES				mefte	Fremurnjes
	GRCOF:	1.	GFOUF:	2	GFGUUF 1	GFOLUF 2
1	\bigcirc)		- 00\%	"Cema
$\underline{2}$	1.		\%		.00)	$\cdots 00$
3	15		5		.0114	- 0\%\%
4	$4 \times$		6		. 1 be	. 44
5	372		21.		- 462	- 119
α	4 c		E\%		, 75\%	. 6464
;	9\%		371		- \%\%	. y \%
8	3		66		. 9950	. 9728
9	θ		7		- \%\%\%	1. \%\%
1.0	1		\%		1. O6\%	1. 队ण¢
1048	1401		1274			

1	\bigcirc	0
2	8	3
3	$\because \%$	20
4	211	130
5	$4 \% 4$	55
6	20	281
7	40	69
8	2	7
9	0	1
O\|n¢	810	974

. O000 . ण0ः
.0日B - 00.4
$.0330 \quad 0.4 \%$
$.248 \quad .1901$
$.750 \%$. 596
$.9538 \quad .91 .9$
$.9978 \quad .9711$
$1.0000 \quad .9769$
1.0011 .000

	FULMCGLAOV-SMIFNUU TWO GKOUF TEST							
	URGEFVED				CUMULATSVE			
	Frewufncilem				FELA\\| JVE FFEGUERCTES			
CLHS	GFLuF'	1	GRUMN:	$\ddot{\sim}$	Grimut 1	BHOLI.	2	
1	1		\%		.0099	. 000		
2	\pm		9		.06世4	, \%)		
3	3 c		3		. 0397	.045		
4	140		1.1		.165	. 196		
5	388		262		. 4707	. 4.701		
6	56e		301		- ¢0\%			
7	198		139		. 9\%t	. 59%	*	
0	20		Q		. 9591	. 9887		
5	1		θ		1. 0000	. 9976		
16	0		\cdots		1.000	$\pm .060$		
101mics	1305		96					

[^3]

					טuthinilve		
	Fratmates				Q\|mat	WEMEEM,	3
C1.95	QxOMF	1	96¢4F	a	GFOUH:	Exali	\because
1	4		1		. 0160	.0640	
2	θ		5		. 0406	. 0240	
3	15		17		. 100	. 08.0	
4.	64		56		. 560	.3160	
5	101		69		. 7600	. 6720	*
6	47		68		. 9460	. 9440	
7	13		12		1.0000	.9920	
8	0		\because		1.0000	1. O¢0\%	
1016	260		W0)				

* D Max =: . O88O

FOLMOGOFOU-EMTFNOQ TWO EROUF TEST
NY
OWGEPVED

CUn+11.OTTVE

x $1110 x=.1319$

MunFMGRETRC I世ET*

 GFT1CAL VALUE AT OI LEVEL = - $49 \% 2$

	KCILMOGOKOU-SMIFNOV TWO GFOUF TEST						
	DESEFVED ?FEDUEVOJES				CUMUIAT JUE		
					FEbat 1 VE	FWembro	4 E
CLASS	GFOLF	1	GFiCUF	2	gricuup 1	GFiOLIF	2
1	¢		O		. 000	- 0000	
2	7		\because		. 3654	. 0300	
3	4		\square		. 5789	. 90\%	*
4	4		11		. 7695	. 640 s	
5	3		9		. 9474	1.0000	
6	1		0		1.000	1.0000	
10 Han	± 7		5			.	

```
        CFTTICGL YALUE AT OW LEVEI= ,4JS9
        GFI|MCAL VGLUE #! Ot LEVE! = ,51|Z
```


QESERVED
FGGUERCIES
CLAOS
1.

1
2
3
4
5
6
7
θ
9
10
TOTA゙，心

GFGUF 1 BROUF 2
O 0
10
$0 \quad 0$
$\%$－
$12 \quad 7$
$16 \quad 6$

$16 \quad 3$
7 －$\quad \Rightarrow$
$\gamma \quad 0$
98
＊ $0 \operatorname{HAX}=:$ ． 1 A a

CUMULAT IVE
Fiwative FiEGUENGIES
GFGULE 1 GROLF 2
．0000 ．ف00
$.010 \mathrm{O} \quad .0 \mathrm{O}$
$.0108 \quad .000$
$.102 \pi \quad .046 \mathrm{E}$
$.2366 \quad .209 \%$
$.40 \%=\quad 340$
.674 － 97 －
$.8455 \quad .860 \mathrm{E}$
.9 ．1．00\％

以IM．

	KOLMGGOFOU SMIFNOU TWO GROUF TEST						
	DASEFUET				Cumill AT TVE		
	FWEMENGIES				FEAATIUE FRECUFNC, IES		
CLASS	GFOUF	1	GFOUF'	2	GFOLUF 1	GRCuli	2
1.	0		0		. 000	. O¢,	
2	0		0		-000	. ف00	
3	0		\because		. 0000	.0351	
4	¢		φ		. 068	.1730	
5	16		11		. 2418	- 2860	*
ϵ	37		$1 \div$		- $070 \pm$. 6.47	
7	24		19		. 7341	- 764%	
8	5		2		. 9950	1.0000	
9	1		\%		1. U9\%	1.009	
10TmLS	71		97				

kOLMOGORGV-SmIFNOU TWG GROUF TEST

CLAS	OFSEFUED				rumblat ave		
	Framedumdes				Fthatue FEmbtumes		
	6FOUF	1	GFOLF	2	EFOUF1	EFOUF	
1	i)		8			- 1000	
\therefore	1		0		- iali	- 6 ¢\%	
$?$	\square		2		. 186	- 292	
4	11		1		-	0.88	*
8	4		$\underline{5}$. 875	.9989	
\therefore	\because		1		- 6 \%	1.000	
7	.		4		1. ¢m	1.0000	
101atme	24		9				

FOLMOCOFOU-SIMIFNOV TWO GFQUFF TEST

$*$ (MAX $=1.144$

```
    CFTTICAL VHLUE AT .OS LEVEL = . 11%E
    CFITMOmL VALUE AT MO LEvEL = . 14EI
    OH1-GMUANE = 10.717% D.F. = 2. FFOE. = 4.7OME--OE
```



```
CFJTJCHL VALUE AT UW LEVEL = - 0qG4
```

CRIMICAL VMLUE A! OI LEVEL $=-11$ O

FGLPOGOFUV SMJFNOV TWO BFUU TEET

$* \mathrm{~N}$ NA: $=.2649$
 CEITBGL UGLUE AT OL LEUEL := . 19 G

KGLMUGOROV SMIFANOV TWO GROUF TEST

TX Es mry trafretate Facswnafe

WEGFHED

CLASS	EFOUF	1	GFO! 2
1	0		0
2	2		1
8	\%		0
4	10		7
5	15		2
6	\pm		31
\%	20		1. 5
8	4		2
T0TALS	95		77

TOTALS

FELAMIVE FFEGUENLIES
GFOLF 1 GHOLO ? .000 . ण叩 .0211 .0130
 .2211 . 103. * $.89 \% \quad .386$ $.474 \quad .77$ $.9679 \quad .9740$
$1.0000 \quad 1.000$
$\therefore \overline{\operatorname{Hax}}=.1172$

CFI ! AGAL VALUE \& "E LEVEL = . WOES CRITCAL VMUE AT al LEVEL = 267 .

	Wectruf		QUTHABM VE	
			168ind	H6mb bias
C.96	6世0\%	\triangle bibe	\therefore ¢\%	Chna-:
1]	0		- 0
2	0	1		. 0154
\cdots	3	1		- 6 ¢ 4
4	1%	;		. 1.36
5	27	26		- E\%S *
6	8	a2	1.0	. 876%
7	0	E	1.0	1. 9090
10TALS	5	6		

GFITLCAL UALUE AT OG LEVEL : $=.251 \%$
CHITAGL VMAE AT O1 LEVLL = $\quad 30 \%$

＊ $\mathrm{m} \mathrm{MX}=\mathrm{B}=1124$

	Or¢				autas		
		1	UEJEC：		WEABM以	F－\％MEn	6
世nem		1	Bratm	\cdots	W以tim 1	Ebuyt	\cdots
1.	1		Q		．ण\％4	－OQ6	
2	1		1		.0146	．O\％	
5	9		1		． 0815	．014\％	
4	$\cdots 1$		12		－ 3111	． 0798	
5	\％		3		． 7298	． 875	＊
6	30		58		． 9491	． 7872	
7	7		． 9		1．0000	． 9200	
8	0		11		1.000	1． 000	
TOTALS	1．3		141				

$\%$ D $114 x=.3500$

QFITICQL VALUE AT OE LEVEI ： 16 $1 G$

\% D 恬 $=$. $=1+6$
CFETBCAL VFbly Al OE BEVEL $=1161$

OESEFED
FGE日UEN: Gays brath a GFO! 2

1	2	0
2	1	0
3	1	\vdots
4	16	\vdots
5	17	9
6	3	19
7	1	\vdots
10 TALS	41	30

* D Max = 48Eg

CFITJCAL VALUE AT OE LEVE! = . CFITICAL VALUE AT Gl LCUEL = 3 BO

KOLMOGOFOV SMIRNOV TWO GRCILF TEST

NW \& M MFH TNTEFGTATE: FGGGENGEF:

 CHATCML VMGUE AT OL 1 EVEI = - O71O

	 - Fubutntive				GuthimajuE		
Limas	GRGU5	1	GFOUF.	2	GFCuly	GFLDUF	2
1.	0		\pm		. 000	- 00so	
-	4		6		. 0065	.0184	
3	9		14		.0212	-0418	
4	43		4.		. 0915	.1120	
5	14%		106		. 3235	- 289\%	
6	2 G		185		. 7859	. 6054	
7	-117		171		. 9771	. 8913	
日	12		5		. 9767	. 978%	
9	2		12		1. ¢00\%	. 989 B	
10	0		1		1. 日\%	1.0000	
101\%6	dy		59				

> CFITIGAL VGLUE AT - GE LEVEL = - OEG
> CFITJOAL VA+HE AT .O』 LEVEL = . 2GIG

KOLMOGOFOV－SNIFWOV TWO GFOLF TEST

```
NH 5E MFH 4 LANE OTVTDED: FAGQENOEF
```

UBEEF口EQ
がEGURNETE

Clasg	EFOHF	1	GFOUF：
1.	1		0
2	3		2
\because	1．		4
4	60		29
\％	61		6
6	6%		6
7	2		45
θ	t		6
9	a		1
10	2		0
TUTALG	260		\％at

CUHULARIVE
FELATIVE FFEGLUENCIES
GFOUF 1 EMQIF ？ .038 ण0क $.0154 \quad$ ．00\％ $.616 \quad$ O． $.2723 \quad .1659$.003 ． 48 a ．ब6\％$\quad 7546$
$.96 \pi 5 \quad .9666$ $.9846 \quad .9958$.96 1．000
1．0000 1.0000
－D $1 \vec{H}=.1064$

$$
\text { CHITAAL UALUE AI OB LEVEL a . } 1260
$$ CHTIWM VALUE AT OI LIVEL＝＂1WO\％

UFSERTEL
TEOLENCTES TOUM 1 LAT IVE FFOUENLTES

CLASO	GFonff	1	EFtuf	2	GFiouf 1	GFOUF	2
1.	\％		0		． 0000	． 0000	
2	2		1		． 0468	．0338	
3	3		1		．1220	．066\％	
4	11		6		－ 302	－ 266%	
5	13		8		.7073	． 53.5	
θ	E		γ		． 7024	． 7667	
7	4		7		1.000	1．000	
TUTALS	41		30				

$$
\# 0 \quad 1 F x=-1740
$$

 WIITGAL VARUE AT ．OA LEVEL＝ 40 O

FOLMOGOROVGYTFNOV TWG GFOLF TESI

CLASS	FFEOUENt!EG				Cunthal But		
					WELMalve	Frimhumat	68
	CFOUP	1	GFiCOUF'	2	GFOUF 1	GFOUF	2
1	3		\because		$\cdots 0$	-6E\%	
2	2		4		. 0151	.0171	
3	15		11		- 60%	. 46	
4	41		24		. 163%	. 1111	
5	94		$\%$		- 46 67	0.42	*
6	84		44		$.71 \%$. 61.14	
\%	62		$\%$		- 706	. $3 ; 11$	
8	20		25		.4667	. 9486	
9	-		13		. 7 Cbx	. 65%	
19	4		0		1.0000	1. 0000	
TOMLs	22		\%				

FRGUnECIEG

-LAS6	EFOUH	1	6) ¢nF
1	0		!
2	2		$\ddot{\sim}$
3	8		4
4	1.4		10
9	1.6		13
6	19		17
7	4		6
8	0		3
9	0		0
10	0		0
TUTALS	63		\%

TORAS
athanas
FELATJUE FHEDUENEEO
 . BOO . BOQ $.031 \% \quad .064$. 156\% . $10 \% 1$ $.3810 \quad .990$ $.654 \% \quad .573$ $.9565 \quad .654$ $1.0000 \quad .9455$ 1.0000 1.0000 1.0001 .0000 1.00001 .000
$20 \operatorname{tax}=.1076$

$C-25$

KOLMOGOFOV-GMIFNOV TWO GFOUF TES'
NHES MFM UFMAH, FASEENGE:

CLASS	OESEFVEO				GUMULAT TVE	
	FFEGUENC1ES				FELATJVE	FREGUENLIES
	GFOur	1	Groum	2	GFOHF1	GROLF $三$
1.	1		0		. 0096	.0000
2	6		3		. 067%	. 0283
3	12		10		. 1.2%	
4	25		19		. 4231	. 3019
5	31		31		. $\% 1 \%$	- 5\%4?
8	18		\%		. 94.3	. 3478
7	9		11		. 9808	. 55.96
8	2		4		1.0000	.9906
9	0		1		1. 000	1. 0900
TOTALS	104.		106			

$$
\begin{aligned}
& \text { CHTVEAL VMLUE AT . OE LEVEL = . } 18 \% 7
\end{aligned}
$$

KOLMLGOFOVMFIFNOV TWQ EROUF TEST

N 4 MEH: FASOEngEF

Class	GHEW\%					
	FKEGLENEIES					Fhemuthestos
	GFOUF	1	QFOuF	2	GFOUF 1 .	GFOUP
1	\square		0		.0000	. 0 O0
2	0		0		. 0000	.000
3	O		¢		. oom	. 000
4	1		3		.0217	.0500
5	4		\%		. 1 \%6	-1500
6	E		13		- S ¢	. S6\%
$\%$,		24		. 4.46	. 760 \%
θ	15		10		. 7609	.93\%
9	7		3		. 9130	. 968 y
10	4		1.		3.000	1. 000
TOTmL	40		60			

WFITIEAL VALUE \&T Ol LTVE :

> CFPTAGAL VALUE AT -OS BEVEL $=-18 \%$ EFITICAL VALUE AT OJ LENEL = . SOB

APPENDIX D

Cumulative Speed Distributions

VEHICLE TYPE : TRUCK

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	Cumulative PERCENT
$>40-45$	2 H	2	0. 10	2	0. 10
$>45-50$	3 H	11	0.54	13	0.63
$>50-55$	4 H	100	4.88	113	5.51
> 55-60	5H	502	24.50	615	30.01
> 60-65	6 H	705	34.41	1,320	64.42
> 65-70	7H	579	28.26	1,899	92.68
> 70-75	8 H	127	6.20	2.026	98.88
> 75-80	9 H	19	0.93	2.045	99.80
>80	1 OH	4	0.20	2,049	100.00

VEHICLE TYPE : TRUCK

SPEED GRDUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	cumulative PERCENT
> 40-45	2 H	8	0.36	8	0.36
> 45-50	3 H	89	4.05	97	4.42
> 50-55	4 H	434	19.75	531	24.17
> 55-60	5 H	1,071	48.75	1,602	72.92
> 60-65	6 H	504	22.94	2. 106	95.86
> 65-70	7H	83	3.78	2,189	99.64
$>70-75$	8 H	7	0.32	2.196	99.95
> 80	10 H	1	0.05	2,197	100.00

SOURCE : TEXAS TRANSPORTATION INSTITUTE


```
STATE : OHIO
FACILITY GROUP : 55 MPH 4 LANE DIVIDED
UNIT : DETECTABLE RADAR
    VEHICLE TYPE : PASSENGER
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & Range & FREQUENCY & PERCENT & Cumulative FREQUENCY & CUMULATIVE PERCENT \\
\hline < 40 & 1 H & 1 & 0.58 & 1 & 0.58 \\
\hline > 40-45 & 2 H & 5 & 2.92 & 6 & 3.51 \\
\hline > 45-50 & 3 H & 17 & 9.94 & 23 & 13.45 \\
\hline > 50-55 & 4H & 35 & 20.47 & 58 & 33.92 \\
\hline > 55-60 & 5 H & 56 & 32.75 & 114 & 66.67 \\
\hline > 60-65 & 6 H & 36 & 21.05 & 150 & 87.72 \\
\hline > 65-70 & 7H & 17 & 9.94 & 167 & 97.66 \\
\hline \(>70-75\)
\(>75-80\) & 8 8 & 3 & 1.75 & 170 & 99.42 \\
\hline
\end{tabular}
VEHICLE TYPE : TRUCK
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & CUMULATIVE FREQUENCY & Cumulative PERCENT \\
\hline \(>45-50\) & 3 H & 6 & 16.22 & 6 & 16.22 \\
\hline \(>50-55\) & 4H & 17 & 45.95 & 23 & 62.16 \\
\hline \(>55-60\) & 5 H & 9 & 24.32 & 32 & 86.49 \\
\hline \(>60-65\) & 6 H & 4 & 10.81 & 36 & 97.30 \\
\hline \(>65-70\) & 7 H & 1 & 2.70 & 37 & 100.00 \\
\hline
\end{tabular}
UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & Cumulative FREQUENCY & CUMULATIVE PERCENT \\
\hline \(>45-50\) & 3 H & 11 & 6.63 & 11 & 6.63 \\
\hline \(>50-55\) & 4 H & 38 & 22.89 & 49 & 29.52 \\
\hline \(>55-60\) & 5 H & 56 & 33.73 & 105 & 63.25 \\
\hline \(>60-65\) & 6 H & 42 & 25.30 & 147 & 88.55 \\
\hline \(>65-70\) & 7 H & 16 & 9.64 & 163 & 98.19 \\
\hline > 70-75 & 8H & 3 & 1.81 & 166 & 100.00 \\
\hline
\end{tabular}
VEHICLE TYPE : TRUCK
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & CUMULATIVE FREQUENCY & cumulative PERCENT \\
\hline \(>45-50\) & 3 H & 3 & 12.50 & 3 & 12.50 \\
\hline \(>50-55\) & 4H & 9 & 37.50 & 12 & 50.00 \\
\hline > 55-60 & 5H & 9 & 37.50 & 21 & 87.50 \\
\hline > 60-65 & 6H & 3 & 12.50 & 24 & 100.00 \\
\hline
\end{tabular}
```

STATE OHIO FACILITY GROUP $: 55 \mathrm{MPH} 2$ LAN					
UNIT : DETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
<40	1 H	4	2.26	4	2.26
$>40-45$	2 H	5	2.82	9	5.08
$>45-50$	3 H	8	4.52	17	9.60
$>50-55$	4 H	42	23.73	59	33.33
$>55-60$	5 H	74	41.81	133	75.14
> 60-65	6H	37	20.90	170	96.05
> 65-70	7H	6	3.39	176	99.44
$>70-75$	8H	1	0.56	177	100.00
VEHICLE TYPE : TRUCK					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2H	2	3.39	2	3.39
$>45-50$	3 H	2	3.39	4	6.78
$>50-55$	4H	17	28.81	21	35.59
$>55-60$	5H	22	37.29	43	72.88
$>60-65$	6 H	12	20.34	55	93.22
> 65-70	7H	4	6.78	59	100.00
UNIT : UNDETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	1	0.68	1	0.68
$>45-50$	3 H	12	8.22	13	8.90
$>50-55$	4 H	37	25.34	50	34.25
$>55-60$	5 H	57	39.04	107	73.29
> 60-65	6H	34	21.23	138	94.52
> 65-70	7H	7	4.79	145	99.32
> 75-80	9 H	1	0.68	146	100.00
VEHICLE TYPE: TRUCK					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
<40	1 H	1	1.49	1	1.49
$>40-45$	2 H	4	5.97	5	7.46
$>45-50$	3 H	7	10.45	12	17.91
$>50-55$	4 H	11	16.42	23	34.33
$>55-60$	5 H	26	38.81	49	73.13
$>60-65$	6 H	15	22.39	64	95.52
$>65-70$	7H	3	4.48	67	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	Range	FREQUENCY	PERCENT	cumulative FREQUENCY	cumulative PERCENT
> 35-40	51	2	25.00	2	25.00
> 40-45	6 L	2	25.00	4	50.00
> 45-50	7L	3	37.50	7	87.50
> 50-55	8L	1	12.50	8	100.00

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GRQUP	Range	FREQUENCY	PERCENT	Cumulative FREQUENCY	CUMULATIVE PERCENT
$>25-30$	3 L	1	0.67	1	0.67
> 30-35	4L	3	2.00	4	2.67
> $35-40$	51	5	3.33	9	6.00
> 40-45	6L	26	17.33	35	23.33
> 45-50	7L	49	32.67	84	56.00
$>50-55$	81	44	29.33	128	85.33
> 55-60	9L	20	13.33	148	98.67
>60	10L	2	1.33	150	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	RaNGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	cumulative PERCENT
> 35-40	51	2	18.18	2	18.18
> 40-45	6 L	2	18.18	4	36.36
> 45-50	7 L	5	45.45	9	81.82
> 50-55	8 L	2	18.18	11	100.00

SOURCE : TEXAS TRANSPORTATION INSTITUTE

```
STATE : OHIO
FACILITY GROUP : 40 MPH 2/4 LANE
```

 UNIT : DETECTABLE RADAR
 VEHICLE TYPE : PASSENGER
 | | | | CUMULATIVE | FREQUENCY | PERCENT |
| :--- | :---: | :---: | :---: | :---: | :---: |

VEHICLE TYPE : TRUCK

			CUMULATIVE	FREQUENCY	PERCENT

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREOUENCY	CUMULATIVE PERCENT
> 30-35	4 L	1	3.33	1	3.33
> 35-40	5L.	12	40.00	13	43.33
$>40-45$	6L	13	43.33	26	86.67
$>45-50$	7L	3	10.00	29	96.67
> 50-55	8 L	1	3.33	30	100.00

VEHICLE TYPE : TRUCK

			CUMULATIVE	FREQUENCY	PERCENT

SOURCE : TEXAS TRANSPORTATION INGTITUTE

```
STATE
                                OHIO
FACILITY GROUP : 35 MPH 2/4 LANE
```

 UNIT : DETECTABLE RADAR
 VEhicle type : passenger
 | | | | | CUMULATIVE | CUMULATIVE |
| :--- | :---: | :---: | :---: | :---: | :---: |
| SPEED GROUP | RANGE | FREQUENCY | PERCENT | PREQUENCY | |

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
> 30-35	4 L	5	45.45	5	45.45
$>35-40$	5L.	3	27.27	8	72.73
$>45-50$	7L	1	9.09	9	81.82
$>50-55$	8L	2	18.18	11	100.00

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	Cumulative PERCENT
> 20-25	2 L	1	0.36	1	0.36
> 25-30	3L	13	4.68	14	5.04
$>30-35$	4L	45	16.19	59	21.22
> 35-40	51	79	28.42	138	49.64
$>40-45$	6 L	78	28.06	216	77.70
> 45-50	7 L	51	18.35	267	96.04
> 50-55	8L	9	3.24	276	99.28
> 55-60	9 L	1	0.36	277	99.64
>60	10 L	1	0.36	278	100.00

VEHICLE TYPE : TRUCK

SPEED GRDUP	RANGE	FREQUENCY	PERCENT	cumulative FREQUENCY	CUMULATIVE PERCENT
> 30-35	4L	1	50.00	1	50.00
$>40-45$	61	1	50.00	2	100.00

SOURCE : TEXAS TRANSPORTATION INSTITUTE

SPEED FREQUENCY DISTRIBUTIONS

```
STATE : OHIO
FACILITY GROUP : 25 MPH
    UNIT : DETECTABLE RADAR
        VEHICLE TYPE : PASSENGER
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & CUMULATIVE FREQUENCY & CUMULATIVE PERCENT \\
\hline \(>20-25\) & 2L & 15 & 8.11 & 15 & 8.11 \\
\hline \(>25-30\) & 3L & 55 & 29.73 & 70 & 37.84 \\
\hline \(>30-35\) & 4L & 77 & 41.62 & 147 & 79.46 \\
\hline \(>35-40\) & 5L & 31 & 16.76 & 178 & 96.22 \\
\hline \(>40-45\) & 6L & 5 & 2.70 & 183 & 98.92 \\
\hline \(>45-50\) & 7L & 2 & 1.08 & 185 & 100.00 \\
\hline
\end{tabular}
    UNIT : UNDETECTABLE RADAR
    VEHICLE TYPE : PASSENGER
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCV & PERCENT & CUMULATIVE FREQUENCY & CUMULATIVE PERCENT \\
\hline \(<20\) & 1 L & 1 & 1.00 & 1 & 1.00 \\
\hline \(>20-25\) & 2 L & 3 & 3.00 & 4 & 4.00 \\
\hline \(>25-30\) & 3L & 15 & 15.00 & 49 & 19.00 \\
\hline \(>30-35\) & 4 L & 29 & 20.00 & 48 & 48.00 \\
\hline \(>35-40\) & 5 L & 37 & 37.00 & 85 & 85.00 \\
\hline \(>40-45\) & 6 L & 45 & 15.00 & 100 & 100.00 \\
\hline
\end{tabular}
SDURCE : TEXAS TRANSPORTATION INSTITUTE
```

STATE
FACILITY GROUP: NEW YORK
55 MPH INTERSTATE

UNIT : DETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	1	0.07	1	0.07
$>45-50$	3 H	15	1.07	16	1.14
$>50-55$	4H	125	8.92	141	10.06
$>55-60$	5 H	372	26.55	513	36.62
$>60-65$	6 H	490	34.98	1,003	71.59
$>65-70$	7H	359	25.62	1,362	97.22
$>70-75$	8H	32	2.28	1.394	99.50
$>75-80$	9H	6	0.43	1.400	99.93
>80	1 OH	1	0.07	1.401	100.00

VEHICLE TYPE : TRUCK

SPEED GRDUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	- 3	0.33	3	0.33
$>45-50$	3 H	27	2.97	30	3.30
> 50-55	4H	211	23.19	241	26.48
$>55-60$	5 H	424	46.59	665	73.08
$>60-65$	6 H	203	22.31	868	95.38
$>65-70$	7H	40	4.40	908	99.78
$>70-75$	8 H	2	0.22	910	100.00

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>45-50$	3 H	5	0.39	5	0.39
$>50-55$	4H	53	4.16	58	4.55
$>55-60$	5 H	212	16.64	270	21.19
$>60-65$	6H	556	43.64	826	64.84
$>65-70$	7H	371	29.12	1,197	93.96
$>70-75$	8 H	. 68	5.34	1, 265	99.29
> 75-80.	9H	9	0.71	1.274	100.00

VEHICLE TYPE : TRUCK

SPEED GROUR	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	3	0.34	3	0.34
$>45-50$	3 H	28	3.13	31	3.47
$>50-55$	4H	130	14.54	161	18.01
$>55-60$	5H	375	41.95	536	59.96
$>60-65$	6H	281	31.43	817	91.39
$>65-70$	7 H	69	7.72	886	99.11
$>70-75$	8 H	7	0.78	893	99.89
$>75-80$	9 H	1	0.11	894	100.00

SOURCE : TEXAS TRANṢPORTATION INSTITUTE

VEHICLE TYPE : TRUCK

			CUMULATIVE	FREQUENCY	PERCENT

SOURCE : TEXAS TRANSPORTATION INSTITUTE

$\begin{array}{ll} \text { STATE } & \text { : NEW YORK } \\ \text { FACILITY GROUP : } 55 \mathrm{MPH} 2 / 4 \text { LANE } \end{array}$					
UNIT : DETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREOUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
<40	1 H	4	2.13	4	2. 13
$>40-45$	2 H	11	5.85	15	7.98
$>45-50$	3 H	23	12.23	38	20.21
> 50-55	4H	50	26.60	88	46.81
$>55-60$	5H	60	31.91	148	78.72
$>60-65$	6 H	32	17.02	180	95.74
$>65-70$			4.26	188	100.00
VEHICLE TYPE : TRUCK					
	*	-		CUMULATIVE	CUMULATIVE
SPEED GROUP	RANGE:	FREQUENCY	PERCENT	FREQUENCY	PERCENT
< 40	1 H	1	5.88	1	5.88
> $40-45$	2 H	1	5.88	2	11.76
$>45-50$	3 H	1	5.88	3	17.65
$>50-55$	4H	6	35.29	9	52.94
$>55-60$	5H	6	35.29	15	88.24
$>60-65$	6 H	2	19.76	17	100.00
- . .					
UNIT, : UNDETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
< 40	1 H	1	0.53	1	0.53
$>40-45$	2 H	8	4. 26	9	4.79
$>45-50$	3 H	26	13.83	35	18.62
$>50-55$	$4{ }^{4}$	47	25.00	82	43.62
$>55-60$	5H	66	35.11	148	78.72
> $60-55$	6 H	27	14.36	175	93.09
. $265-70$	7 H	12	6.38	187	99.47
$>70-75$	8 H	1	0.53	188	100.00
VEHICLE PYPE : TRUCK					
SPEED GROUP	Range	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2H	2	5.41	2	5.41
$>45-50$	3 H	7	18.92	9	24.32
$>50-55$	4H	11	29.73	20	54.05
$>55-60$	5H	11	29.73	31	83.78
$>60-65$	6 H	5	13.51	36	97.30
> 65-70	7H	1	2.70	37	100.00

[^4]```
STATE : NEW YORK
FACILITY GROUP : 5O MPH 2 LANE
 UNIT : DETECTABLE RADAR
 VEHICLE TYPE : PASSENGER
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GRDUP & RANGE & FREQUENCY & PERCENT & CUMULATIVE FREOUENCY & Cumulative PERCENT \\
\hline > 40-45 & 2 H & 7 & 36.84 & 7 & 36.84 \\
\hline \(>45-50\) & 3 H & 4 & 21.05 & 11 & 57.89 \\
\hline \(>50-55\) & 4 H & 4 & 21.05 & 15 & 78.95 \\
\hline \(>55-60\) & 5 H & 3 & 15.79 & 18 & 94.74 \\
\hline > 60-65 & 6H & 1 & 5.26 & 19 & 100.00 \\
\hline
\end{tabular}
 VEHICLE TYPE : TRUCK
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & Cumulative FREQUENCY & CUMULATIVE PERCENT \\
\hline > 40-45 & 2H1 & 1 & 50.00 & 1 & 50.00 \\
\hline \(>55-60\) & 5 H & 1 & 50.00 & 2 & 100.00 \\
\hline
\end{tabular}
 UNIT : UNDETECTABLE RADAR
 VEHICLE TYPE : PASSENGER
\begin{tabular}{lccccc}
& & & CUMULATIVE & FREQUENCY & PERCENT
\end{tabular}
SOURCE : TEXAS TRANSPORTATION INSTITUTE
```



| $\begin{array}{ll} \text { STATE } & : \text { NEW YORK } \\ \text { FACILITY GROUP } & 40 \mathrm{MPH} 2 / 4 \text { LANE } \end{array}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UNIT : DETECTABLE RADAR |  |  |  |  |  |
| VEHICLE TYPE : PASSENGER |  |  |  |  |  |
| SPEED GROUP | RANGE | FREQUENCY | PERCENT | CUMULATIVE FREQUENCY | CUMULATIVE PERCENT |
| > 30-35 | 4 L | 6 | 6.59 | 6 | 6.59 |
| $>35-40$ | 5L | 16 | 17.58 | 22 | 24. 18 |
| $>40-45$ | 6L | 39 | 42.86 | 61 | 67.03 |
| $>45-50$ | 7 L | 24 | 26.37 | 85 | 93.41 |
| $>50-55$ | 8L | 5 | 5.49 | 90 | 98.90 |
| $>55-60$ | 9 L | 1 | 1. 10 | 91 | 100.00 |
| VEHICLE TYPE : TRUCK |  |  |  |  |  |
| SPEED GROUP | RANGE | FREQUENCY | PERCENT | CUMULATIVE FREQUENCY | CUMULATIVE PERCENT |
| > 35-40 | 51 | 3 | 50.00 | 3 | 50.00 |
| $>40-45$ | 6L | 2 | 33.33 | 5 | 83.33 |
| $>45-50$ |  | 1 |  | 6 | 100.00 |
| UNIT : UNDETECTABLE RADAR |  |  |  |  |  |
| VEHICLE TYPE : PASSENGER |  |  |  |  |  |
| SPEED GROUP | RANGE | FREQUENCY | PERCENT | CUMULATIVE FREQUENCY | CUMULATIVE PERCENT |
| $>25-30$ | 3 L | 2 | 3.51 | 2 | 3.51 |
| > 30-35 | 4L | 9 | 15.79 | 11 | 19.30 |
| > 35-40 | 5L | 11 | 19.30 | 22 | 38.60 |
| $>40-45$ | 6L | 15 | 26.32 | 37 | 64.91 |
| $>45-50$ | 7 L | 18 | 31.58 | 55 | 96.49 |
| $>50-55$ | 81 | 2 | 3.51 | 57 | 100.00 |
| VEHICLE TYPE: TRUCK |  |  |  |  |  |
| SPEED GROUP | RANGE | FREQUENCY | PERCENT | CUMULATIVE FREQUENCY | CUMULATIVE PERCENT |
| > 25-30 | 31 | 1 | 25.00 | 1 | 25.00 |
| > 35-40 | 5L | 3 | 75.00 | 4 | 100.00 |

[^5]```
STATE 
UNIT : DETECTABLE RADAR
VEHICLE TYPE : PASSENGER
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & CUMULATIVE FREQUENCY & Cumulative PERCENT \\
\hline \(>20-25\) & 2 L & 1 & 4.17 & 1 & 4.17 \\
\hline \(>25-30\) & 3L & 3 & 12.50 & 4 & 16.67 \\
\hline \(>30-35\) & 4L & 11 & 45.83 & 15 & 62.50 \\
\hline \(>35-40\) & 5 L & 6 & 25.00 & 21 & 87.50 \\
\hline \(>40-45\) & 6L & 2 & 8.33 & 23 & 95.83 \\
\hline \(>45-50\) & 7 L & 1 & 4.17 & 24 & 100.00 \\
\hline
\end{tabular}
VEHICLE TYPE : TRUCK
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & CUMULATIVE FREQUENCY & CUMULATIVE PERCENT \\
\hline \(>30-35\) & 4 L & 1 & 33.33 & 1 & 33.33 \\
\hline \(>35-40\) & 5L & 1 & 33.33 & 2 & 66.67 \\
\hline \(>40-45\) & 6L. & 1 & 33.33 & 3 & 100.00 \\
\hline
\end{tabular}
UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPEED GROUP & RANGE & FREQUENCY & PERCENT & CUMULATIVE FREQUENCY & CUMULATIVE PERCENT \\
\hline > 25-30 & 3 L & 2 & 22.22 & 2 & 22.22 \\
\hline \(>30-35\) & 4L & 1 & 11.11 & 3 & 33.33 \\
\hline \(>35-40\) & +5L & 5 & 55.56 & 8 & 88.89 \\
\hline \(>40-45\) & 6 L & 1 & 11.19 & 9 & 100.00 \\
\hline
\end{tabular}
```

SOURCE : TEXAS TRANSPORTATION INSTITUTE

:	SPEED FREQUENCY DISTRIBUTIUNS			\cdots	
$\begin{array}{ll} \text { STATE } & \text { : NEW YORK } \\ \text { FACILITY GROUP }: 30 \mathrm{MPH} 2 / 4 \end{array}$					
UNIT : DETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	Range	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
< 20	12	9	2.93	9 28	2.93
- $20-25$	2	19	6. 19	28	9. 12
$>25-30$	3L	68	22.15	96	31.27
$>30-35$	4L	88	28.66	184	59.93
> 35-40	5L	69	22.48	253	82.41
$>40-45$	6 L	42	13.68	295	96.09
$>45-50$	71	12	3.91	307	100.00
VEHICLE TYPE: TRUCK					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREOUENCY	cumulative PERCENT
$>20-25$	2 L	2	22.22	2	22.22
> 25-30	3L	3	33.33	5	55.56.
$>30-35$	4L	2	22.22	7	77.78
> 35-40	5L	2	22.22	9	100.00
UNIT : UNDETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>20-25$	2L	10	4.20	10	4.20
$>25-30$	3L	31	13.03	41	17.23
$>30-35$	4L	68	28.57	109	45.80
$>35-40$	5 L	12	30.25	181	76.05
$>40-45$	6L	39	16.39	220	92.44
$>45-50$	7 L	15	6.30	235	98.74
$>50-55$	8L	2	0.84	237	99.58
$>55-60$	9 L	1	0.42	238	100.00
VEHICLE TYPE : TRUCK					
SPEED GROUP	RANGE	FREOUENCY	PERCENT	Cumulative FREQUENCY	CUMULATIVE PERCENT
<20	1 L	2	18.18	2	18.18
$>20-25$	2 L	2	18.18	4	36.36
$>25-30$	3L	4	36.36	8	72.73
$>30-35$	4L	1	9.09	9	81.82
> 35-40	5L	2	18.18	11	100.00

[^6]| STATE FACILITY GROUP : TEXAS $65 / 60 \mathrm{MPH}$ RURA | AL INTER | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UNIT : detectable radar | | | | | |
| VEhicle type : Passenger | | | | | |
| SPEED GPOUP | RANGE | FREQUENCY | PERCENT | cumulative FREQUENCY | CUMULATIVE PERCENT |
| $>40-45$ | 2 H | 2 | 0.51 | 2 | |
| $>45-50$ | 3 H | 7 | 1.78 | 9 | 2.29 |
| $>50-55$ | 4 H | 27 | 6.87 | 36 | |
| > 55-60 | 5 H | 66 | 16.79 | 102 | 25.95 |
| $>60-65$ | 6 H | 162 | 41.22 | 264 | 67.18 |
| $>65-70$ | 7H | 112 | 28.50 | 376 | 95.67 |
| $>70-75$ $>75-80$ | $8 \mathrm{8H}$ | 16 | 4.07 | 392 | 99.75 |
| > 75-80 | 9 H | 1 | 0.25 | 393 | 100.00 |

VEHICLE TYPE : TRUCK

| | | | CUMULATIVE | CUMULATIVE |
| :--- | :---: | :---: | :---: | ---: | ---: |
| SPEED GROUP | RANGE | FREQUENCY | PERCENT | FREQUENCY |

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	Cumulative PERCENT
$>40-45$	2 H	1	0.25	1	0.25
> 45-50	3 H	4	0.99	5	1.24
$>50-55$	4H	17	4.21	22	5.45
$>55-60$	5 H	65	16.09	87	21.53
$>60-65$	6H	134	33.17	221	54.70
$>65-70$	7H	148	36.63	369	91.34
$>70-75$	8 H	27	6.68	396	98.02
> $75-80$	9 H	8	1.98	404	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>45-50$	3 H	1	0.30	1	0.30
$>50-55$	4 H	24	7.32	25	7.62
$>55-60$	5 H	109	33.23	134	40.85
$>60-65$	6H	119	36.28	253	77.13
$>65-70$	7H	55	16.77	308	93.90
$>70-75$	8 H	18	5.49	326	99.39
$>75-80$	9 H	2	0.61	328	100.00

SPEED FREQUENCY DISTRIBUTIONS					
STATE : TEXAS					
FACILITY GROUP : 55 MPH INTERS	ATE				
UNIT : DETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREOUENCY	PERCENT	CUMULATIVE	CUMULATIVE
SPEED GROUP	RANGE	FREQUENCY	PERCENT	FREQUENCY	PERCENT
$>40-45$	2 H	2	2.11	2	2.11
$>45-50$	3 H	3	3.16	5	5.26
$\geq 50-55$	4 H	16	16.84	21	22.19
$>55-60$	5 H	15	15.79	36	37.89
$>60-65$	6 H	35	36.84	71	74.74
> 65-70	7H	20	21.05	91	95.79
> 70-75	8 H	4	4.21	95	100.00
VEHICLE TYPE : TRUCK					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>45-50$	3 H	6	10.71	6	10.71
$>50-55$	4H	15	26.79	21	37.50
> 55-60	5H	27	48.21	48	85.71
> 60-65	6 H	8	14.29	56	100.00
			,	.	
UNIT : UNDETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
> 40-45	2 H	1	1.30	1	1.30
$>50-55$	4 H	7	9.09	8	10.39
> 55-60	5 H	21	27.27	29	37.66
$>60-65$	6 H	31	40.26	60	77.92
$>65-70$	7 H	15	19.48	75	97.40
> 70-75	8 H	2	2.60	77	100.00
					-
VEHICLE TYPE : TRUCK					
SPEED GROUP	Range	FREQUENCY	PERCENT	Cumulative FREQUENCY	CUMULATIVE PERCENT.
> 40-45	2 H	1	1.54	1	1.54
$>45 \cdot 50$	3 H	1	1.54	2	3.08
$>50-55$	4 H	7	10.77	9	13.85
$>55-60$	5 H	26	40.00	35	53.85
> 60-65	6 H	22	33.85	57	87.69
> 65-70	7 H	8	12.31	65	100.00
		*			
SQURCE : TEXAS TRANSPORTATION	INSTITU				

[^7]| STATE FACILITY GROUP : 55 MPH 2 LANE | | | - | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UNIT : DETECTABLE RADAR | | | - | | |
| VEHICLE TYPE : PASSENGER | | | | | |
| SPEED GROUP | RANGE | FREQUENCF | PERCENT | Cumulative FPEQUENCY | cumulative PERCENT |
| $>40-45$ | 2 H | 6 | 2.06 | 6 | 2.06 |
| $>45-50$ | 3 H | 19 | 6.53 | 25 | 8.59 |
| $>50-55$ | 4 H | 63 | 21.65 | 88 | 30.24 |
| $>55-60$ | 5H | 118 | 40.55 | 206 | 70.79 |
| $>60-65$ | 6 H | 57 | 19.59 | 263 | 90.38 |
| $>65-70$ | 7H | 24 | 8.25 | 287 | 98.63 |
| > 70-75 | 8H | 4 | 1.37 | 291 | 100.00 |
| VEHICLE TYPE : TRUCK | | | | | |
| SPEED GRDUP | RANGE | FREQUENCY | PERCENT | CUMULATIVE FREQUENCY | CUMULATIVE PERCENT |
| <40 | 1H | 2 | 4.88 | 2 | 4.89 |
| $>40-45$ | 2 H | 1 | 2.44 | 3 | 7.32 |
| $>45-50$ | 3 H | 1 | 2.44 | 4 | 9.76 |
| $>50-55$ | 4H | 16 | 39.02 | 20 | 48.78 |
| $>55-60$ | 5 H | 17 | 41.46 | 37 | 90.24 |
| $>60-65$ | 6 H | 3 | 7.32 | 40 | S7.56 |
| > 65-70 | 7 H | 1 | 2.44 | 41 | 100.00 |
| UNIT : UNDETECTABLE RADAR | | | | | |
| VEHICLE TYPE : PASSENGER | | | | | |
| SPEED GROUP | RANGE | FREQUENCY | PERCENT | Cumulative FREQUENCY | CUMULATIVE PERCENT |
| <40 | 1 H | 1 | 0.38 | 1 | 0.38 |
| $>40-45$ | 2 H | 2 | 0.77 | 3 | 1. 15 |
| $>45-50$ | 3 H | 43 | 5.00 | 16 | 6.15 |
| $>50-55$ | 4 H | 40 | 15.38 | 56 | 21.54 |
| $>55-60$ | 5 H | 98 | 37.69 | 154 | 59.23 |
| $>60-65$ | 6 H | 67 | 25.77 | 221 | 85.00 |
| $>65-70$ | 7H | 31 | 11.92 | 252 | 96.92 |
| $>70-75$ | 8 H | 6 | $2.31{ }^{\circ}$ | 258 | 99.23 |
| > 75-80 | 9 H | 2 | 0.77 | 260 | 100.00 |

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	Cumulative PERCENT
$>45-50$	3 H	3	8.33	3	8.33
$>50-55$	4 H	3	8.33	6	16.67
$>55-60$	5H	9	25.00	15	41.67
$>60-65$	6 H	19	52.78	34	94.44
> 65-70	7H	2	5.56	36	100.00

VEHICLE TYPE : TRUCK

SPEED GRDUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	2	4.88	2	4.88
$>45-50$	3 H	3	7.32	5	12.20
$>50-55$	4 H	11	26.83	16	39.02
$>55-60$	5 H	13	31.71	29	70.73
$>60-65$	6 H	8	19.51	37	90.24
$>65-70$	7H	4	9.76	41	100.00

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE: PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	2	0.95	2	0.95
$>45-50$	3 H	4	1.90	6	2.84
$>50-55$	4 H	29	13.74	35	16.59
$>55-60$	5M	68	32.23	103	48.82
> $60-65$	6H	56	26.54	159	75.36
$>65-70$	7H	45	21.33	204	96.68
$>70-75$	8 H	6	2.84	210	99.53
$>75-80$	9 H	1	0.47	211	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	1	3.33	1	3.33
> 45-50	3 H	1	3.33	2	6.67
$>50-55$	4H	6	20.00	8	26.67
$>55-60$	5 H	8	26.67	16	53.33
$>60-65$	6 H	7	23.33	23	76.67
$>65-70$	7H	7	23.33	30	100.00

STATE $:$ NEW MEXICO FACILITY GROUP $: 55 \mathrm{MPH} 2$ LAN					
UNIT : DETECTABLE RADAR				.	
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
<40	1H	3	0.90	3	0.90
$>40-45$	2 H	2	0.60	5	1.51
$>45-50$	3 H	15	4.52	20	6.02
$>50-55$	4H	44	12.35	61	18.37
$>55-60$	5 H	94	28.31	155	46.69
> 60-65	6 H	84	25.30	239	71.99
$>65-70$	7H	62	18.67	$301 \ldots$	90.66
$>70-75$	8 H	20	6.02	32.1	96.69
$>75-80$	9 H	7	2.11	328	98.80
>80	1 OH	4	1.20	332	100.00
VEHICLE TYPE : TRUCK					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	Cumulative PERCENT
$>40-45$	2 H	2	3. 17	2	3. 17
$>45-50$	3 H	8	12.70	10	15.87
$>50-55$	4 H	14	22.22	24	38.10
$>55-60$	5H	16	25.40	40	63.49
$>60-65$	6 H	19	30.16	59	93.65
$>65-70$	7H	4	6.35	63	100.00
UNIT : UNDETECTABLE RADAR					
VEHICLE TYPE : PASSENGER					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREOUENCY	CUMULATIVE PERCENT
<40	1H	2	0.57	2	0.57
$>40-45$	2 H	4	1. 14	6	1.71
$>45-50$	3 H	11	3.14	17	4.86
$>50-55$	4 H	24	6.86	41	11.71
$>55-60$	5H	79	22.57	120	34.29
$>60-65$	6 H	94	26.86	214	61.14
$>65-70$	7H	93	26.57	307	87.71
$>70-75$	8 H	25	7.14	332	94.86
$>75-80$	9 H	13	3.71	345	98.57
>80	10 H	5	1.43	350	100.00
VEHICLE TYPE : TRUCK					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	2	3.64	2	3.64
$>45-50$	3 H	4	7.27	6	10.91
$>50-55$	4 H	10	18.18	16	29.09
$>55-80$	5H	13	23.64	29	52.73
$>60-65$	6H	17	30.91	46	83.64
$>65-70$	7H	6	10.91	52	9.4 .55
$>70-75$	8 H	3	5.45	55	100.00

SOURCE : TEXAS TRANSPORTATION INSTITUTE

ŠTATE FACILITY GROUP : NEW MEXICO 55 MPH RURAL	INTERST				
UNIT : DETECTABLE RADAR					
vehicle type : Passenger					
SPEED GROUP	RANGE	FREQUENCY	PERCENT	cumulative FREQUENCY	cumulative PERCENT
< 40	1 H	1	0.09	1	0.09
$>40-45$	2 H	2	0.18	3	0.28
> 45-50	3 H	15	1.38	18	1.66
$>50-55$	4 H	57	5.25	75	6.91
> 55-60	5 H	214	19.71	289	26.61
> 60-65	6 H	365	33.61	654	60.22
$>65-70$	7 H	327	30.11	981	90.33
$>70-75$	8 H	87	8.01	1.068	98.34
$>75-80$	$\stackrel{9 H}{10 \mathrm{H}}$	17	1.57	1.085	99.91
> 80	10 H	1	0.09	1.086	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	4	0.65	4	0.65
> 45-50	3 H	9	4.47	13	2. 12
> 50-55	4 H	43	7.03	56	9.15
> 55-60	5 H	142	23.20	198	32.35
$>60 \div 65$	6 H	283	46.24	481	78.59
> $65-70$	7H	117	19.12	598	97.71
> 70-75	8 H	12	1.96	610	99.67
> $75-80$	9 H	2	0.33	612	100.00

UNIT : UNDETECTABLE RȦDAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	Cumulative PERCENT
> 40-45	2 H	3	0.26	3	0.26
> 45-50	3 H	9	0.78	12	1.04
$>50-55$	4 H	65	5.63	77	6.67
$>55-60$	5 H	152	13.16	229	19.83
$>60-65$	6 H	300	25.97	529	45.80
> 65-70	7H	443	38.35	972	84.16
$>70-75$	8 H	140	12.12	1. 112	96.28
> 75-80	9 H	30	2.60	1,142	98.87
>80	10 H	13	1.13	1,155	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
< 40	1 H	3	0.50	3	0.50
$>40-45$	2 H	8	1.34	11	1.84
> 45-50	3 H	14	2.34	25	4.18
$>50-55$	4H	42	7.02	67	11.20
> 55-60	5 H	106	17.73	173	28.93
> 60-65	6 H	189	31.61	362	60.54
> 65-70	7 H	171	28.60	533	89.13
$>70-75$	8 H	52	8.70	585	97.83
> 75-80	9 H	12	2.01	597	99.83
>80	10 H	1	0.17	598	100.00

```
STATE : NEW MEXICO
FACILITY GROUP : }55\mathrm{ MPH INTERSTATE
```

UNIT : DETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GRDUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2H	2	0.89	2	0.89
$>45-50$	3 H	17	7.56	19	8.44
$>50-55$	4H	47	20.89	66	29.33
> 55-60	5H	61	27.11	127	56.44
$>60-65$	6 H	69	30.67	196	87.11
$>65-70$	7H	27	12.00	223	99.11
$>70-75$	8 H	2	0.89	225	100.00

VEHICLE TYPE: TRUCK

SPEED GRDUP	RANGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
<40	1H	1	1.12	1	1. 12
$>40-45$	2 H	2	2.25	3	3.37
$>45-50$	3 H	9	10.11	12	13.48
$>50-55$	4 H	24	26.97	36	40.45
$>55-60$	5 H	23	25.84	59	66.29
$>60-65$	6 H	27	30.34	86	96.63
> 65-70	7H	3	3.37	89	100.00

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	RaNGE	FREQUENCY	PERCENT	CUMULATIVE FREQUENCY	CUMULATIVE PERCENT
$>40-45$	2 H	4	0.48	1	0.48
$>45-50$	3 H	6	2.87	7	3. 35
$>50-55$	4 H	29	13.88	36	17.22
$>55-60$	5 H	47	22.49	83	39.71
$>60-65$	8H	71	33.97	154	73.68
$>65-70$	7H	47	22.49	201	96.17
> 70-75	8 H	5	2.39	206	98.56
$>75-80$	9 H	2	0.96	208	99.52
>80	10 H	1	0.48	209	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	CUMULAT IVE FREQUENCY	Cumulative PERCENT
$>40-45$	2 H	1	4.12	1	1.12
$>45-50$	3 H	3	3.37	4	4.49
$>50-55$	4 H	20	22.47	24	26.97
$>55-60$	5 H	24	26.97	48	53.93
$>60-65$	6 H	28	31.46	76	85.39
$>65-70$	7H	12	13.48	88	98.88
> 70-75	BH	1	1.12	89	100.00

SOURCE : TEXAS TRANSPORTATION INSTITUTE

[^8]

SOURCE : TEXAS TRANSPORTATION INSTITUTE

UNIT : DETECTABLE RADAR
VEHICLE TYPE : PASSENGER

SPEED GROUP	Range	FREQUENCY	PERCENT	cumulative FREQUENCY	cumulative PERCENT
> 20-25	2L	2	1.48	2	1.48
> 25-30	3L	14	10.37	16	11.85
> 30-35	4L	28	20.74	44	32.59
> 35-40	5L	42	31.11	86	63.70
> 40-45	6L	35	25.93	121	89.63
> 45-50	7L	11	8.15	132	97.78
$>50-55$	8L	3	2.22	135	100.00

VEHICLE TYPE : TRUCK

SPEED GROUP	RANGE	FREQUENCY	PERCENT	Cumulative FREQUENCY	cumulative PERCENT
> 25-30	3 L	1	25.00	1	25.00
> 30-35	4L	1	25.00	2	50.00
> 35-40	51	1	25.00	3	75.00
> 40-45	6 L	1	25.00	4	100.00

UNIT : UNDETECTABLE RADAR
VEHICLE TYPE : PASSENGER

				CUMULATIVE	
SPEED GROUP	RANGE	FREQUENCY	PERCENT	FREQUENCY	PERCENTIVE

VEHICLE TYPE : TRUCK

				CUMULATIVE-• CUMULATIVE	
SPEED GROUP	RANGE	FREQUENCY	PERCENT	FREQUENCY	PERCENT
$-30-35$	$4 L$	1	50.00	50.00	
$\gg 35-40$	$5 L$	1	50.00	1	100.00

SOURCE : TEXAS TRANSPORTATION INSTITUTE

[^0]: *indicates significant difference between detectable and undetectable, p<.05.

[^1]: *indicates significant difference between detectable and undetectable, p<. 05 .

[^2]: *indicates significant difference between detectable and undetectable, p<. 05 .

[^3]:

[^4]: SOURCE : TEXAS TRANSPORTATION INSTITUTE

[^5]: SOURCE : TEXAS TRANSPORTATION INSTITUTE

[^6]: SOURCE : TEXAS TRANSPORTATIDN INSTITUTE

[^7]: SOURCE : TEXAS TRANSPQRTATION INSTITUTE

[^8]: SOURCE : TEXAS TRANSPORTATION INSTITUTE

